
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

6k (6x6) 12k (12x12) 24k (24x24) 48k (48x48) 96k (96x96)
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9
G

F
L

O
P

S

P
er

ce
n

t 
(%

)

Matrix size (Grid size)

FT-Hess
ScaLapack Hess
Performance Penalty (%)

(a) Without failures

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

6k (6x6) 12k (12x12) 24k (24x24) 48k (48x48) 96k (96x96)
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

G
F

L
O

P
S

P
er

ce
n

t 
(%

)

Matrix size (Grid size)

FT-Hess
ScaLapack Hess
Performance Penalty (%)

(b) With failures

Figure 6: Overhead of FT-Hess without failures and with one failure. Platform: Titan, NB = 80, Algorithm 2

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

6k (6x6) 12k (12x12) 24k (24x24) 48k (48x48) 96k (96x96)
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

G
F

L
O

P
S

P
er

ce
n

t 
(%

)

Matrix size (Grid size)

FT-Hess
ScaLapack Hess
Performance Penalty (%)

Figure 7: Overhead of FT-Hess without failures. Platform: Ti-
tan, NB = 80, Algorithm 3

the recovery cost included, the total overhead of our fault tolerant
Hessenberg reduction algorithm is still very low and it decreases as
the problem increases. It is down to 4.03% for the matrix of size
96000 (process grid dimension: 96⇥96).

7.3 Numerical Stability After Recovery From
a Failure

In this subsection, we show how our fault tolerant Hessenberg re-
duction algorithm maintains the same level of numerical stability as
the original ScaLAPACK algorithm.

Floating point numbers are represented in IEEE 754 format in mod-
ern computers, floating point operations are not carried out in exact
arithmetic. Standard error analysis for the reduction of a general
matrix A to Hessenberg form H by means of similarity transforma-
tions shows the process to be backward stable [50, page 363]. In
particular, the process reduces a nearby problem Â = A+E into Ĥ
with a set of similarity transformations U and at the end we get:

Ĥ =U>ÂU (2)

The bound on the residual error E [50, page 351] is

kEkF/kAkF  f(N)e (3)

where f is a low degree polynomial [50, page 351, Table 1] and e
is the unit roundoff (machine precision). This is an expected result

since the transformation only employs orthogonal transformations
and therefore does not introduce rounding errors larger than those
already existing in the data. In fact, its backward error analysis
has been used in a scheme that detects soft errors in linear algebra
operations at runtime [9].

The ScaLAPACK PDGEHRD routine uses the following factoriza-
tion residual to verify the factorization result

r• =
kA�UHU>k•

kAk•Ne

where r• is a slowly growing function of N. For practical purposes
r• may be checked against a constant threshold rt . We consider
the reduction correct if the residual r• is smaller than the threshold
rt = 3.

To show backward stability of the recovery process, we use the
technique of projecting the error (resulting from a fault) back into
the original matrix A [40]. We then exploit the fact that the back-
ward error analysis already involves a perturbation to A and the
reduction is shown to provide a solution to a nearby problem Â
with a satisfactory bound on the perturbing error. Then, using a
standard dot-product error analysis [17], we show that the numer-
ical stability is not affected by the recovery from the fault. The
dot-product analysis applies to our checksum procedure with only a
slight modification.

There are three sources of errors in addition to the error existing in
the original algorithm after the recovery:

• from the initial encoding of the input matrix,

• from updating the global checksum,

• from recovering the lost data in the case of a failure.

Errors from encoding the input matrix. The initial checksums
are calculated through a simple summation operation. On a P⇥Q
process grid, each checksum element involves at most Q�1 addition
operations . The rounding error (denoted by E1) introduced by
encoding the input matrix is bounded by

E1  (Q�1)e (4)


