
0"

5"

10"

15"

20"

25"

30"

0"

10"

20"

30"

40"

50"

60"

20k"(6x6)" 40k"(12x12)" 80k"(24x24)" 160k"(48x48)" 320k"(96x96)" 640k"(192x192)"

Tfl
op

/s
'O
ve
rh
ea
d'
(%

)'

Pe
rf
or
m
an

ce
'(T

flo
p/
s)
'

Matrix'size'(grid'size)'

FT1LU"performance" Non1FT"LU"performance" Overhead"

Figure 8. Weak scalability of FT-LU: performance and overhead
on Kraken, compared to non fault tolerant LU

fault tolerance aspects, for example generating checksum, check-
pointing and recovery. An efficient and scalable algorithm will in-
cur a minimal overhead over the original algorithm while protecting
the data against failures.

We use the NICS Kraken supercomputer hosted at the Oak
Ridge National Laboratory as our testing platform. This machine
features 112,896 2.6GHz AMD Opteron cores with the Seastar in-
terconnect. At the software level, to serve as a comparison base, we
use the non fault tolerant ScaLAPACK LU and QR in double preci-
sion with block size NB = 100. The fault tolerance functions are
implemented and plugged in directly into ScaLAPACK routines.

In this section, we first evaluate the storage overhead in the form
of extra memory usage, then show experimental result on Kraken
to assess the computational overhead.

6.1 Storage Overhead
Checksum takes extra storage (memory) on each process, and on
large scale systems memory usage is normally maximized for com-
puting tasks. Therefore, it is preferable to have a small ratio of
checksum size over matrix size, in order to minimize the impact
on the memory available to the application itself. For the sake of
simplicity, and because of the small impact in term of memory us-
age, neither the pivoting vector nor the column shift are considered
in this evaluation.

Different protection algorithms require different amounts of
memory. In the following, we consider the duplication algorithm
presented in Section 4.5.2 for computing the upper memory bound.
The storage of the checksum includes the row-wise and column-
wise checksums and a small portion at the bottom-right corner.

For an input matrix of size M⇥N on a P ⇥Q process grid, the
memory used for checksum (including duplicates) is M ⇥ N

Q ⇥ 2.
The ratio Rmem of checksum memory over the memory of the
input matrix, equals to 2

Q , becomes negligible with the increase
in the number of processes used for the computation.

6.2 Overhead without Failures
Figure 8 evaluates the completion time overhead and performance,
using the LU factorization routine PDGETRF. The performance of
both the original and fault tolerant version is reported in Tflop/s.
This experiment is carried out to test the weak scalability where
both the matrix and grid dimension doubles. The result shows that
as the problem size and grid size increases, the overhead drops
quickly and eventually becomes negligible. At the matrix size of
640, 000 ⇥ 640, 000 on 36, 864 (192 ⇥ 192) cores, both versions

0"

5"

10"

15"

20"

25"

30"

35"

40"

45"

50"

20k"(6x6)" 40k"(12x12)" 80k"(24x24)" 160k"(48x48)"

Ru
n$
%m

e$
ov
er
he

ad
$(%

)$

Matrix$size$(grid$size)$

Failure"on"Q"panels"border"

Failure"within"Q"panels"

No"error"

Figure 9. Weak scalability of FT-LU: run time overhead on
Kraken when failures strike at different steps

achieved over 48Tflop/s, with an overhead of 0.016% for the ABFT
algorithm. As a side experiment, we implemented the naive vertical
checkpointing method discussed in section 5.2, and as expected the
measured overhead quickly exceed 100%.

As the left factor is touched only once during the computation,
the approach of checkpointing the result of a panel synchronously
can, a-priori, look sound when compared to system based check-
point, where the entire dataset is checkpointed periodically. How-
ever, as the checkpointing of a particular panel suffers from its in-
ability to exploit the full parallelism of the platform, it is subject
to a derivative of Amdahl’s law, where its importance is bound to
grow when the number of computing resources increases. Its par-
allel efficiency is bound by P, while the overall computation enjoys
a P ⇥Q parallel efficiency. As a consequence, in the experiments,
the time to compute the naive checkpoint dominates the compu-
tation time. On the other hand, the hybrid checkpointing approach
exchanges the risk of a Q-step rollback with the opportunity to ben-
efit from a P ⇥ Q parallel efficiency for the panel checkpointing.
Because of this improved parallel efficiency, the hybrid checkpoint-
ing approach benefits from a competitive level of performance, that
follows the same trend as the original non fault tolerant algorithm.

6.3 Recovery Cost
In addition to the “curb” overhead of fault tolerance functions, the
recovery from failure adds extra overhead to the host algorithm.
There are two cases for the recovery. The first one is when failure
occurs right after the reverse neighboring checkpointing of Q pan-
els. At this moment the matrix is well protected by the checksum
and therefore the lost data can be recovered directly from the check-
sum. We refer to this case as “failure on Q panels border”. The sec-
ond case is when the failure occurs during the reverse neighboring
checkpointing and therefore local snapshots have to be used along
with re-factorization to recover the lost data and restore the matrix
state. This is referred to as the ”failure within Q panels”.

Figure 9 shows the overhead from this two cases for LU fac-
torization, along with the no-error overhead for reference. In the
“border” case, the failure is simulated to strike when the 96th

panel (which, in another word, is a multiple of grid columns,
6, 12, · · · , 48) has just finished. In the “non-border” case, failure
occurs during the (Q+2)th panel factorization. For example, when
Q = 12, the failure is injected when the trailing update for the step
with panel (1301,1301) finishes. From the result in Figure 9, the
recovery procedure in both cases adds a small overhead that also
decreases when scaled to large problem size and process grid. At

9 2011/8/19

