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Fig. 8: Weak scalability test of PDGEMM on the Dancer
cluster

along with sophisticated broadcasting scheme, therefore the
inner product shape used by the vertical checkpointing cannot
benefit from such a design. In contrast, the local checkpointing
scales well because checkpointing is performed in parallel
by all involved processes and global collective operation is
avoided. This scalability ensures that the overhead caused by
the left factor checkpointing will not grow into a performance
drag when moving to a larger scale.

With the local checkpointing, the overall overhead of the
fault tolerant PDGESV is shown in Fig. 9, where 64 processes
are arranged in a 8⇥ 8 grid. For the case marked with “one
error in L and U”, two data items are modified as error
injection at location (400,150) and (300,500) right before the
panel factorization for blocks (501:end,501:600) starts. The
“one error” case includes the checkpointing overhead and the
time to recover from the two errors. Same setup applied to
performance experiments with alike marks.

This experiment shows that the overhead decreases with
larger problems. At 32000, the overhead of the initial check-
pointing for the right factor, local checkpointing for the left
factor and the extra FLOPs from doing PDGESV with two
extra columns is below 1%.

C. Recovery Performance
To test the recovery performance, experiments are carried

out on both Dancer and Newton clusters.
Fig. 10 is the performance in Gflop/s of the same experiment

in Fig. 9. PDGEMM performance is included as the achievable
machine peak to show that ScaLAPACK PDGESV runs at a
reasonable speed. Fig. 11 is the result on Newton with 256
processes in a 16⇥16 grid. Both Gflop/s performance results
show that the soft error resilience functionality demands little
overhead, and moving to a larger grid does not cause overhead
increase.

For LU, algorithm stability is an important issue and it is
critical that the recovered solution is numerically close to the
original solution. Since in all our experiments the recovered
residue r = kAx�bk

kAkkbkM is in the same magnitude as that of the
original solution, this comparison is skipped.
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Fig. 9: The checkpointing and recovery overhead on the
Dancer cluster
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IX. CONCLUSION

In this paper, a high performance dense linear system solver
with soft error resilience is proposed. This work is based on
a mathematical model of treating soft error during LU factor-
ization as rank-one perturbation and recovering the solution of
Ax = b with the Sherman-Morrison formula. We extended this
model to LU with partial pivoting with a practical numerical
bound for error detection, and a scalable checkpointing algo-
rithm to protect the left factor from soft error which is needed
for recovery. Experimental results based on a ScaLAPACK
implementation show that the fault tolerance functionality adds
negligible overhead to the linear system solving and scale
well on modern cluster systems. As future work, multiple-
error problem will be addressed, and the protection to other
matrix factorizations will also be explored.
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