
Preparing the TAU Performance System
for Exascale and Beyond

Journal Title
XX(X):1–16
©The Author(s) 2023
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Kevin A. Huck1 and Sameer Shende1 and Allen D. Malony1 and Camille Coti2 and Wyatt
Spear1 and Jordi Alcaraz1 and Dewi Yokelson1 and Srinivasan Ramesh5 and Monil
Mohammad Alaul Haque4 and Chad Wood7 and Nick Chaimov3 and Cameron Durbin3 and
Alister Johnson1 and Jacob Lambert6 and Izaak Beekman3

Abstract
The TAU Performance System® is a portable profiling and tracing toolkit for performance analysis of parallel programs
written in Fortran, C, C++, UPC, Java, Python. TAU (Tuning and Analysis Utilities) is capable of gathering performance
information through instrumentation of functions, methods, basic blocks, and statements as well as event-based
sampling. All C++ language features are supported including templates and namespaces. The API also provides
selection of profiling groups for organizing and controlling instrumentation. The instrumentation can be inserted in
the source code using an automatic instrumentation tool based on the Program Database Toolkit (PDT), dynamically
using binary modification, at runtime in the Java Virtual Machine, or manually using the instrumentation API.
Under the Exascale Computing Program (ECP), the TAU project was funded to prepare the software for exascale
systems and beyond. Many new features and optimizations were added to TAU, including support for the new exascale
system architectures and their preferred programming models. The new features include OpenMP Tools support,
updated or newly implemented CUDA, HIP, and SYCL support, updated OpenACC and Clacc support, MPI updates,
a new plugin API and several plugins, instrumentation updates, support for the Kokkos and Raja profiling interfaces,
updated support for Python, PyTorch, TensorFlow, and Horovod, and removed threading limitations. In this paper, we will
discuss these updates and more, and demonstrate the features with ECP Proxy Applications and full ECP applications.

Keywords
exascale computing, high performance computing, parallel computing, performance measurement tools, performance
analysis

Introduction

Throughout the history of parallel computing, there has
been a need to measure, analyze, and understand the
performance of next-generation computer systems and
the applications that run on them. However, designing,
developing, and implementing parallel performance tools is
a challenging research enterprise. Continuous advances in
high-performance computing (HPC) architecture, hardware,
system software, and programming environments challenge
performance tool methodologies and technologies to keep
pace with the ever-growing complexity of the parallel
execution and the performance problems that can arise. The
importance of heterogeneous parallelism to achieve extreme-
scale performance, coupled with performance portable
parallel programming systems, places even further demands
on performance tools to be integrated seamlessly and
ubiquitously in all aspects of the HPC ecosystem. Such was
the case with the US Department of Energy (DOE) Exascale
Computing Program (ECP)2 and the TAU Performance
System® 3.

The TAU project at the University of Oregon was
funded to prepare the TAU (Tuning and Analysis Utili-
ties) technology for exascale systems and beyond. TAU
maintenance and development for these new systems,
libraries, and applications was directly provided by the

PROTEAS-TUNE Software Technology sub-project4. In
addition to TAU development, the TAU team was also
engaged with several ECP Application sub-projects5 and
Software Technology sub-projects6 where TAU was being
used and integrated. The Application sub-projects included
WDMApp, CODAR, CANDLE, NWChemEx, ExaLearn,
CoPA, ExaWind, and Combustion-PELE. The Software
Technology sub-projects included ADIOS, Alpine, Exa-
PAPI, SOLLVE, PETSc/TAO, SUNDIALS/Hypre, Exascale
MPI/MPICH, UPC++/GASNet, Kokkos, Argo, and E4S. In
the course of our activities, many new features and optimiza-
tions were added to TAU, including support for the delivered
exascale systems and their preferred programming models.
The new features include (but certainly not limited to):

1University of Oregon, USA
2École de Technologie Supérieure, Canada
3ParaTools, Inc., USA
4Oak Ridge National Laboratory, USA
5NVIDIA, USA
6AMD, USA
7Stability AI

Corresponding author:
Kevin A. Huck, OACISS Institute, University of Oregon, Eugene, Oregon,
97403, USA.
Email: khuck@cs.uoregon.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

Figure 1. TAU works with all of these Open Source and ECP models, libraries and technologies (source: OSTI 1646052 1)

Figure 2. Due to its highly configurable and portable nature,
TAU supports all existing US Department of Energy HPC
systems, both pre- and post-exascale, and plans to do so for the
years to come.

• OpenMP Tools support
• Updated/new CUDA, HIP, and SYCL support
• Updated OpenACC and Clacc support
• Message Passing Interface (MPI) updates
• New TAU plugin API and several plugins types
• Instrumentation updates
• Support for the Kokkos and Raja profiling interfaces
• Python, PyTorch, TensorFlow, and Horovod udpates
• Removal of threading limitations

Figure 1 shows a selection of the open source models,
libraries, and container technology that have been tested or
integrated with TAU.

One of the challenges of researching, developing, and
maintaining software on state of the art HPC systems
is that the systems are constantly evolving and are
frequently replaced by new architectures. Figure 2 shows
one small window into the evolution of leading machines
at DOE Office of Science and National Nuclear Security
Administration (NNSA) research laboratories. During the

last 12 years, the systems have evolved in significant ways.
The IBM BlueGene/Q7 and Intel Knights Landing8 systems
were challenging due to dense, many-core processors.
The heterogeneous systems using NVIDIA GPUs have
evolved and have been complemented by exascale-class
GPU accelerated systems using new AMD9 and Intel10

architectures. In addition, evolutionary and revolutionary
advances in networking, filesystems, batch control systems,
and all of the other system software have required
complementary advances in performance measurement tools
like TAU.

In this paper, we will discuss some of the updates to TAU,
and demonstrate the features with ECP Proxy Applications
and a few full ECP applications.

Background: TAU Design

The core of the TAU library is built around the seemingly
simple task of observing performance events registered via
API calls as an application executes. These events represent
some action occurring in the computation and an associated
performance measurement either at the time of the event
(called an atomic event) or at the begin and end of the event
(called an interval event). An atomic event could be used
to capture the size of an MPI message, for instance. An
interval event could be used to determine the duration of
time spent between the entry and exit of a function. Events
also be collected periodically, such as high-level monitoring
counters that are collected once every 10 seconds, or low-
level sampling support for profiling that is captured one
hundred times per second.

The API calls that engage these events can be inserted into
application code manually or using various automated mech-
anisms that TAU supports. TAU’s Performance Database
Toolkit (PDT) provides source code instrumentation for dif-
ferent languages. TAU uses code insertion features common

Prepared using sagej.cls

Huck et al. 3

to modern compilers, to insert instrumentation during com-
pilation. Different binary editing tools (e.g., DynInstAPI11,
MAQAO12, PEBIL13) can be used to insert TAU API calls.

In addition to instrumentation of the target application
TAU is also capable of registering performance events
by library wrapping. A wrapped library engages the
instrumentation API when calls to the library’s functions
occur. This greatly simplifies collection of performance data
pertaining to functions commonly relevant to performance
tuning such as MPI communications and POSIX I/O.
Wrapped libraries can be preloaded at runtime for dynamic
linking or injected at link time for static linking.

As we will see later in the paper, several programming
models and languages (OpenMP, OpenACC, Kokkos,
Python) provide built-in mechanisms for allowing tools to
register with the application at startup. These models and
libraries will recognize that a performance tool has been
loaded into the user’s environment, and will register callback
functions for entry and exit into key regions or phases of
the model or library. In these cases the application does not
need to be instrumented to provide timing insights. These
integrations can either be built as a weak symbol replacement
model, or using a plugin interface.

In contrast to direct instrumentation, TAU also supports
periodic sampling. This requires no modification to the
application and is achieved by periodically interrupting the
application with a signal, which triggers a signal handler
that interrogates the instruction counter and unwinds the call
stack at runtime. The precise entry and exit times of functions
are not recorded by sampling but with an adequate sampling
rate observations of the time functions spend on the call
stack before completion are comparable in accuracy to direct
instrumentation. Integration of timers and samples is also
supported14.

All forms of performance data collection require careful
design and testing to ensure compatibility with the
parallel programming paradigms supported by TAU. MPI
implementations, threading models, a variety of rapidly
developing accelerator hardware and different compilers
all have specific requirements and performance interfaces
that must be taken into account in TAU’s measurement
architecture. In order to support portable hardware counter
collection, TAU is integrated with PAPI15 and LIKWID16,
thereby providing a common interface across many different
processor and integration architectures. PAPI also provides
access to hardware counters from devices such as NVIDIA
and AMD GPUs.

Measurements of an application’s performance behavior
must be stored as performance data that can be recorded
and analyzed. TAU generates profile data which summarizes
the time spent in instrumented or sampled blocks of code
for each rank and thread of execution. Profiles also provide
statistical summaries of atomic events. TAU profiles can
be read and filtered as text or visualized in the ParaProf
profile viewer17. Multiple profiles can be stored in the
TauDB database18 and analyzed in scaling, regression, or
other parametric studies via the PerfExplorer profile analysis
tool19. TAU also provides tools to convert its profile output
to other formats for analysis with other tools.

Profiles provide an efficient summary of an application’s
performance behavior. TAU can also generate performance

traces which record every performance event on a timeline
for each thread of execution. Traces can be viewed in
tools such as Jumpshot (included with TAU) or the
Vampir trace viewer20. A performance trace provides a
visual representation of an application’s execution behavior,
allowing identification of communication patterns and the
specific context of performance hotspots that may be
obscured by the reduced resolution of a profile.

New TAU Features Developed Under ECP
Throughout the 30+ year history of the TAU Performance
System, the evolution of the HPC hardware, software, and
systems technologies has resulted in new requirements for
HPC performance tools. Some of the challenges presented by
these requirements to TAU’s next-generation development
could be met by improvements or extensions of existing
functionality or better integration with other tools. TAU takes
pride in the fact that much of its fundamental design and
core engineering have remained robust over generations and
allowed a growing set of capabilities that span generations
of HPC platforms. However, other challenges introduced
can have a more disruptive effect whereby a re-thinking
and possible re-engineering of certain TAU mechanisms
are necessary. ECP resulted in both cases (incremental,
disruptive) happening in TAU’s advancement as we highlight
in the discussion that follows. (The new TAU features
are in bold.) While some features might seem more of a
continuation of what TAU has already been doing, it does
not imply that updating TAU to support them was trivial.
It is also the case that brand new features are designed to
be integrated in TAU’s overall architecture and not only for
immediate release.

OpenMP Tools Support
OpenMP is a Fortran, C, and C++ language extension
that provides portable parallel programming support for
shared memory and heterogeneous computing resources.
The specification includes source code annotation (pragmas)
that are transformed by the compiler to generate API
calls into an OpenMP runtime provided by the compiler.
OpenMP provides a short runway for application and
library developers to each provide portable multi-threaded
parallelism, but at the cost of an opaque runtime
implementation. This opacity was a challenge when parallel
efficiencies are less than expected and users are unable to get
insight into how the original source code was transformed
and how they might eliminate bottlenecks.

In May 2013, the first Technical Report (TR) related to
the OpenMP Tools standard was published by the OpenMP
standards committee. Since then, the API specification for
both OpenMP runtimes and tools has evolved to include
the first integrated and accepted standard of OpenMP-
Tools (OMPT) in the OpenMP 5.0 standard released in
November, 2018. The beauty of the tool specification is
that it provides tool access to the internal workings of what
had previously been a black box OpenMP runtime. Prior to
OMPT, TAU could only provide insight by instrumenting the
source code with the OPARI API21, a semi-automated and
sometimes error-prone approach. Since the early days of
the first TR, TAU has evolved to both evaluate prototype

Prepared using sagej.cls

4 Journal Title XX(X)

implementations of the specification as well as provide
support to utilize it when the first compilers provided a
full 5.0 compliant implementation.

TAU provides support for measuring all of the OpenMP
callback types, including parallel regions, worksharing
regions, teams, threads, tasks, synchronization, and locks.
With this support, TAU can provide the application developer
insight into how OpenMP pragmas are transformed by the
compiler into multi-threaded or heterogeneous computing
code without adding additional instrumentation.

OpenMP Target Offload. In addition to CPU events,
TAU can utilize the OMPT runtime support to collect
performance data related to OpenMP target offload events,
where computational kernels are offloaded to processing
devices such as graphical processing units (GPUs).

Figure 3 shows an example trace collected of the
miniQMC proxy application22 executed on the HPE Cray
EX Frontier supercomputer23. In the example shown, TAU
collected an OTF2 trace24 of the application, and the OMPT
support provided measurement of not just the CPU events
on the POSIX threads, but also the GPU memory transfer,
synchronization, and kernel events.

OpenACC and Clacc Support
OpenACC (for Open Accelerators) is a parallel programming
standard specifically targeting accelerators and programming
heterogeneous systems providing GPUs and multicore
CPUs. The standard is published by the OpenACC
Organization, led by industrial partners and hardware
vendors such as Cray, HPE, Nvidia and PGI. It provides
an interface specification in C, C++ and Fortran. Similar to
OpenMP, OpenACC provides pragmas that are transformed
by the compiler to runtime API calls into an OpenACC
runtime library.

Whereas OpenMP follows a prescriptive model, Ope-
nACC follows a descriptive model: the programmer
describes where parallelism can be extracted and which data
needs to be moved to and from the accelerator, and the
compiler generates the corresponding parallel loops and data
movements. Therefore, OpenACC programs rely more on
the compiler. In addition to loops, OpenACC provides the
kernel directive that indicates that this region can be paral-
lelized. The compiler needs to analyze data dependencies in
the region, identify parallelism that can be extracted and data
that needs to be transferred, and generate the corresponding
parallel loops and data movements.

A couple of open source and commercial compilers imple-
ment the OpenACC specification. The Clacc compiler25

supports OpenACC using LLVM’s existing OpenMP com-
piler and runtime support. The OpenACC code is parsed,
a corresponding (OpenACC) Abstract Syntax Tree (AST)
is generated, and this AST is translated into an OpenMP
AST. At this point, Clacc offers two options: either this
OpenMP AST is translated into LLVM IR and an executable
is generated, or from this OpenMP AST, an OpenMP source
code is generated and compiled by the OpenMP compiler.

The resulting executable is executed using LLVM’s
OpenMP runtime environment. Both OpenACC and
OpenMP provide a callback-based profiling interface:
callback functions are called at specific points of the

program, such as task creation and before and after data
transfers. In Clacc, the application triggers OpenMP events.
An OpenACC runtime environment translates these
events into OpenACC events26, which are intercepted by
TAU.

With commercial compilers such as NVHPC, the
OpenACC runtime adheres strictly to the OpenACC Profiling
API. OpenACC’s profiling interface uses callbacks, like the
OMPT interface. However, unlike the OMPT interface, all
the callback routines of the OpenACC profiling interface
have the same prototype (OpenMP has 40+ different callback
function signatures):

Listing 1: Prototype of the OpenACC callback routines.
t y p e d e f vo id (* a c c c a l l b a c k)

(a c c c a l l b a c k i n f o * , a c c e v e n t i n f o * ,
a c c a p i i n f o *) ;

t y p e d e f a c c c a l l b a c k a c c p r o f c a l l b a c k ;

The first argument, of type acc_prof_info contains the
event type in its first field of type acc_event_t. As a
consequence, TAU implements a single callback routine and
its behavior is determined based on the event type.

For instance, when the run-time environment
enters a parallel construct, it triggers the
acc_ev_compute_construct_start callback.
Any function that respects the prototype can be registered
on this callback; it can be a specific function, or the
same as for other callbacks. This function interrogates the
event_type field to determine which event was triggered:

Listing 2: Registration of a generic callback routine.
vo id a c c r e g i s t e r l i b r a r y (a c c p r o f r e g reg ,

a c c p r o f r e g unreg ,
a c c p r o f l o o k u p lookup) {

/ * . . . * /
r e g (a c c e v c o m p u t e c o n s t r u c t s t a r t ,

&T a u o p e n a c c c a l l b a c k , a c c r e g) ;
r e g (a c c e v c o m p u t e c o n s t r u c t e n d ,

&T a u o p e n a c c c a l l b a c k , a c c r e g) ;
/ * . . . * /

}
T a u o p e n a c c c a l l b a c k (a c c p r o f i n f o * p r o f i n f o ,

a c c e v e n t i n f o * e v e n t i n f o ,
a c c a p i i n f o * a p i i n f o) {

s w i t c h (p r o f i n f o −>e v e n t t y p e) {
c a s e a c c e v c o m p u t e c o n s t r u c t s t a r t :

/ * . . . * /
b r e a k ;

c a s e a c c e v c o m p u t e c o n s t r u c t e n d :
/ * * /
b r e a k ;

/ * * /
}
/ * . . . * /

}

OpenACC’s profiling interface was introduced in the
2.5 version of its specification. Similarly to OpenMP’s
tooling interface, the OpenACC profiling interface gives
access to internals of the runtime system: for instance, the
acc_ev_enqueue_launch_start event is triggered
just before an accelerator computation is enqueued for execu-
tion on a device, and acc_ev_enqueue_launch_end
is triggered just after the computation is enqueued. TAU

Prepared using sagej.cls

Huck et al. 5

Figure 3. TAU was used to collect profiles and traces of OpenMP target offload benchmarks (miniQMC on Frontier shown),
observing OpenMP regions and device offload events without application instrumentation

has implemented full support for both the OpenACC
profiling interface and the profiling technique used by
Clacc. The initial implementation supported the PGI
compiler starting in 2015, and has subsequently been
tested with the Clacc and NVHPC compilers on exascale
systems.

GPU Measurement Support
NVIDIA CUDA. CUDA is a parallel compute platform for
general purpose computing with NVIDIA GPUs27. The
CUDA Toolkit is available for C, C++, and Fortran with
the compilers shipped with the toolkit. Additionally, there
is support for other popular languages, such as Python
(PyCUDA), and multiple libraries have been optimized and
implemented directly on top of CUDA, for instance: BLAS,
FFT, SPARSE, and SOLVER.

CUDA does not require directives nor code annotations
(pragmas). However, the developer needs to include CUDA
API calls into the application for the GPU memory
allocations, data transfers between GPU and host (or use
unified memory if available) and design how the offloaded
code should be executed in the underlying GPU architecture.
The CUDA code is then compiled by the provided compilers
(or compiler wrappers).

The toolkit also includes its own performance analysis
tools and an API called CUDA Profiling Tools Interface
(CUPTI)28 that can be integrated into performance analysis
tools to profile applications offloading work to NVIDIA
GPUs. CUPTI reports performance data related to the
execution of kernels, memory transfers between GPU and
CPU, memory allocations, different CUDA API calls and
also NVIDIA Tools Extension (NVTX) events29. NVTX
provides a library to insert annotations into programs and
there are two types of annotations included in this library:
a) markers: markers insert a message at a certain point of the
code. Multiple markers can be included in an application and
each marker can have a different category, color and payload
values; and b) ranges: between two points of the application

two markers can be inserted to establish where a certain event
occurs in the code and obtain profiling information of one or
multiple ranges.

TAU began providing CUPTI support in 2010. As the
NVIDIA technology has evolved, TAU has evolved along
with it to provide performance measurement support
for kernel execution, memory transfers, NVTX events,
and OpenMP/OpenACC kernel execution. TAU provides
trace support for the CUDA runtime and driver APIs,
which allows for both high and low level measurement,
respectively. In addition, TAU integrates with the PAPI30

portable hardware counter library to provide access to
thousands of low level hardware counters available on
the latest NVIDIA hardware. For monitoring support,
TAU now integrates the NVIDIA Monitoring Library
(NVML)31 to provide periodic interrogation of GPU
counters indicating utilization, ECC error counts, power
management, the process being executed, temperatures,
fan speed and clock frequencies.

AMD ROCm/HIP. As mentioned in the introduction, the first
exascale system deployed in the US is the Frontier system at
Oak Ridge National Laboratory. Frontier is designed around
AMD processors and CDNA™232, a new architecture of
GPU accelerator also designed by AMD.

ROCm is AMD’s software stack for GPU programming,
it has support for both NVIDIA and AMD GPUs. There are
three parallel programming models in the ROCm software
stack: HIP, OpenMP and OpenCL (Open Computing
Language – broadly supported in TAU since 2010, shortly
after the initial release of the standard). HIP is the new
programming model developed by AMD to write C++
kernels for the two main GPU vendors. Additionally, ROCm
includes a tool called HIPIFY, which is used to automatically
convert CUDA code to HIP C++ code.

Multiple supercomputers are installed with AMD GPUs,
such as Frontier (the first official exascale supercomputer),
El Capitan (another exascale computer, which was deployed
in late 2024) and other supercomputers in the TOP 500.

Prepared using sagej.cls

6 Journal Title XX(X)

Therefore, as the number of computers using AMD GPUs
increases, the need for performance analysis tools to improve
performance of applications also increases. Hence, we
implemented the ROCm profiling interface into TAU to
be able to access performance metrics of applications
using the ROCm software stack.

TAU’s interface to profile OpenCL and OMPT based
applications can be used with AMD GPUs as both
parallel paradigms are included in the ROCm software
stack. Furthermore, ROCm includes its own profiling tool,
called rocprof which reports multiple metrics related to
kernel execution, memory usage, memory transfers, ROCm
related api calls, code annotations and additional metrics.

The API used to integrate ROCm profiling into
performance analysis tools is divided into two parts,
each of which operate independently. The two parts
are: a) ROCprofiler, a basic profiling interface with
detailed information that reports kernel execution times and
parameters of the kernels, such as grid and work group size,
number of barriers and register usage; b) ROCtracer, which
provides limited profiling of the kernels but also reports
ROCTX code annotations, HIP API calls (both runtime and
driver level) and memory operations. TAU has integrated
support for both libraries.

As having two different profiling interfaces was redun-
dant, an initial second version of the ROCm profiler tools
(called rocprofv2) was released with ROCm v6.0.0. This
version incorporates both ROCprofiler and ROCtracer func-
tionalities in one single interface, whereas in the previous
version, the user had to choose between the profiler or
the tracer when monitoring an application. Reflecting this
change, TAU was modified and the flag -rocprofv2 can be
used at configuration time to select the new version of the
profiler. With this change, TAU is able to obtain information
about kernel execution time, time spent in memory opera-
tions, memory usage, grid and work group sizes, and other
ROCm related metrics alongside the trace of HIP API calls.

AMD also provides a monitoring library, ROCm-SMI,
similar to the CUDA NVML library. TAU has integrated
support for this library, and also provides access to low
level GPU counters through the PAPI library.

Intel oneAPI. The second exascale system to be deployed in
the US is the Aurora system at Argonne National Laboratory.
Aurora is designed around Intel Xeon processors and a new
GPU accelerator architecture, Xe, also designed by Intel.
The Aurora system is programmed using Intel’s development
system called oneAPI, Intel’s approach to multi-architecture
parallel programming, with support for CPU, GPU (there
is support for Intel, AMD and NVIDIA), FPGA and other
accelerators. oneAPI consists of DPC++, C++/C, and Fortran
compilers including OpenMP target offload and OpenCL
support for all languages.

The Intel DPC++ compiler provides support for the SYCL
programming model, which is the recommended software
stack for GPU programming on Intel Xe systems like Aurora.
On Intel systems, the SYCL support is layered on top of
Level Zero33. The objective of the oneAPI Level Zero API
is to provide low-level interfaces to offload computation to
accelerator devices.

TAU has added Level Zero integration for DPC++
runtime events, including DPC++ symbol demangling
support for computational kernel names. TAU now
provides tracing and profiling support for Level Zero
API calls, and TAU also provides OpenCL performance
instrumentation and measurement support. TAU has also
included integrated Level Zero support for measuring
asynchronous kernel execution and data transfer times.
In addition, TAU now includes support for Intel AI
Toolkit for Tensorflow/PyTorch (further described in
the next section) to complement existing Intel Exascale
Laboratory MAQAO binary instrumentation, Intel PIN
integration, PAPI and LIKWID performance counter library
integration for Intel CPUs.

Kokkos. Both the Kokkos34 and Raja35 performance
portability models include a mechanism for profiling tool
integration and support, and TAU has added support for
both of them. Kokkos and Raja are both C++ abstraction
libraries, providing a common programming interface for
heterogeneous back end technologies. In the case of Kokkos,
it provides a cross-platform suite of programming hooks that
are consistent regardless of the selected back end. Kokkos
currently provides back end support for CUDA, HIP, SYCL,
HPX, OpenMP and C++ threads. Because TAU already
supports most of those back ends, it was a straightforward
exercise to provide Kokkos profiling support through TAU.

Performance tools register with Kokkos at startup,
providing an environment variable with the name of a
shared object library that contains definitions of Kokkos
callback functions for key events in the Kokkos runtime.
These events include kernel entry/exit for parallel for,
parallel reduce, and parallel scan events.
Kokkos also has events for allocation/free events, and its
own region push/pop calls for instrumenting user code. TAU
added support for these events automatically for users,
with no modification to existing programs necessary.

MPI Tools Information Interface (MPI T)
For many years, TAU has provided MPI measurement
using the standard weak symbol replacement approach,
where each MPI function is a weakly defined wrapper
around an equivalent PMPI function. At either link or
runtime, TAU replaces those weak definitions with strongly
defined symbols including TAU instrumentation around the
PMPI calls. MPI 3.0 introduced the MPI Tools Information
Interface (MPI T)36. MPI T provides an interface that
allows users to access two types of variables, which are
called performance variables (PVARs) and control variables
(CVARs). PVARs represent internal counters or metrics
which can be accessed to collect and analyze performance
data of the MPI library by tools. CVARs represent properties
or configurations of the MPI library that may change the
behavior of the implementation, such as the maximum
number of buffers to use in a given pool and the eager
communication threshold. There are variables that can only
be modified before the MPI runtime is started in the
application but others can be modified more than once and
while the runtime is being executed.

MPI T is not limited to only access one variable and all
available variables may be consulted. However, the correct

Prepared using sagej.cls

Huck et al. 7

Figure 4. Implementation of TAU with the MPI T interface.

modification of the performance variables is left to the
user’s discretion. Also, each MPI implementation may have
different PVARs and CVARs.

Figure 4 shows how TAU is able to access the
MPI T interface to consult and also modify variables.
We can interact with TAU at real-time using BEACON
and PYCOOLR37 and access the MPI T interface to
monitor CVARs and PVARs. Additionally, BEACON and
PYCOOLR can also be used to apply manual tuning and
dynamically tune CVARs.

Furthermore, TAU can also be used to obtain the value
of all the CVARs without interaction with the user at the
end of the application. TAU is able to use plug-ins for
auto-tuning – analyze the behavior and/or performance of
an application, and with a set of rules or functions analyze
the available metrics to decide if a control variable, or
a set of control variables, should be modified to increase
the performance of an application or solve performance
issues. Plug-ins can also be used to report CVARs which
cannot be modified at runtime, so a report is generated after
execution providing a message with the variables that should
be modified and the recommended value.

Python Updates
Usability issues with traditional HPC programming lan-
guages, libraries, and frameworks are pushing users to newer,
higher-level frameworks for specialized purposes, such as
workflow management, application prototyping, deep learn-
ing, and data analytics. HPC systems, including leadership

Department of Energy systems, are increasingly being called
upon to support such workloads, often multi-language appli-
cations in which a Python frontend is used to call into C,
Fortran and C++ libraries and to run code on GPU accelera-
tors. In order to support profiling such applications with
TAU, we made several improvements to TAU’s Python
support and made wide-scale changes to data structures
in TAU to better support applications with large numbers
of potentially transient threads.

Thread Scalability Improvements. Data analytics and deep
learning frameworks making use of Python infrastructure
tend to spawn a much larger number of threads than
traditional HPC applications. In particular, they tend to
spawn transient threads corresponding to a fine-grained task,
and even when a thread persists as a worker across an
entire program run, there tend to be more threads spawned
per node than there are cores on the node. Historically,
TAU had several limitations owing to its history being
applied to programs with tens of threads rather than hundreds
or thousands per process. These limitations reduced both
scalability and ease of use. In cases where TAU maintains
thread local data internally, this had been handled by fixed
length arrays from 0 to a maximum number of threads per
node. Because these arrays could not grow at runtime, the
user was required to know in advance the maximum number
of threads per node a given application will spawn. For
deep learning frameworks, the number of threads used may
depend on properties of the input data, so that there might be
no setting guaranteed to work for any input.

Prepared using sagej.cls

8 Journal Title XX(X)

To resolve these usability issues in TAU, we surveyed
the existing TAU code, resulting in identification of 83 data
structures in 39 source files in TAU that were of a fixed size at
the time. TAU was then refactored to replace such usages
with dynamically sized data structures (“dynamization”),
typically making use of C++ Standard Template Library
data structures where possible. A regression test suite
was run after each data structure was updated in order to
identify any issues caused by differing semantics between
the old and new data structures. Once correctness had been
achieved, we analyzed the performance consequences in
terms of overhead of dynamization. Increased overheads can
be incurred because data structures that might be resized
must be locked on access to prevent access during resize.
Where a performance regression is found, optimizations are
applied, such as by using thread local caches.

With thread local caching, a thread first checks whether
it already possesses a local copy requested data and, if so,
uses it directly without locking. Only if a thread does not
have an existing copy (typically only occurs early in the
lifespan of a thread) must a lock be acquired so that the
global, dynamically-sized data structure can be accessed.
This optimization is permitted in cases where the data
structures are append-only, implying that once an entry is
inserted into the map, it will never be updated. Ultimately,
all 83 instances of fixed-size data structures within TAU
were replaced with dynamized data structures. Testing was
performed using several example benchmarks, including the
LULESH38 code to provide testing of high thread counts in
a distributed setting.

After optimization, no additional overhead is observed in
a pthread and OpenMP matrix multiplication benchmark,
nor in a pthread version of LULESH. Overhead of 9%
was observed in OpenMP with LULESH. Similar overheads
were observed with the TensorFlow iris example code. To
further reduce overheads, the use of coarse-grained locks
within TAU was reduced. Overhead with LULESH and with
TensorFlow was reduced by changing the implementation
of thread local caches to use a per-map lock instead of
the global lock to protect access. After this, overheads
were comparable between the original, fixed-thread-number
implementation of TAU and the dynamic-thread-count
version.

Deep Learning Framework Integration. The central diffi-
culty in producing insightful and actionable performance
data about high-level Machine Learning (ML) frameworks is
the declarative nature of the language and the abstract, task-
based nature of its runtime. TensorFlow39, PyTorch40, and
the Keras41 API provide callback hooks that enable tools
such as TAU to receive information about the scheduling
and execution of work by the runtimes. TensorFlow’s built-
in instrumentation uses a class SessionRunHook that
enables registration of callbacks that are invoked at session
start and session end. We developed a SessionRunHook
instance that inserts operations around each graph ele-
ment that start and stop TAU timers and register meta-
data identifying the graph node being executed, whether
on the CPU or GPU.

For Keras, we used call-path-based profiling to link
the identity of high-level Keras operations responsible

for a particular lower-level operation in the underlying
framework by starting a timer representing the high-
level operation when its graph node is executed. In
both TensorFlow and PyTorch, this is implemented using
the Keras Callbacks API and is based on modifications
to the TensorBoardCallback class built into Keras.
Additionally, the on epoch begin and on epoch end
callbacks are used to support phase-based profiling so that
performance differences between epochs can be identified.
These callbacks are used by specifying an additional
parameter when training a model.

We compared the overheads of TAU instrumentation using
technologies developed under this project with Kinteo, a
first-party PyTorch profiling tool. We measured the overhead
of TAU with combinations of Python profiling, CUPTI
profiling for capturing CUDA kernel timings, and event-
based sampling as applied to the FashionMNIST42 example
code included with PyTorch. As is shown in Table 1, TAU
provides lower overheads than does the first-party Kineto
profiler43. In this case, the Kineto profiler, even when
configured to not store or process performance data in any
way (instead discarding the data) incurred an overhead of
671% merely by being enabled. In contrast, a relatively
lower overhead configuration of TAU (collecting GPU kernel
timing data from an NVIDIA accelerator) introduced only
28.93% overhead, and a maximal configuration of TAU,
collecting GPU kernel timings, Python function timings, and
event-based samples incurred only 106% overhead. Note
that these overheads are largely a result of the unavoidable
CUPTI and Python profiling library support.

Instrumentation Methods
Source Based Instrumentation. TAU has historically
supported source instrumentation through a component
developed alongside TAU, the Program Database Toolkit44,
or PDT. C89, C11, C++98, C++11, Fortran 77, Fortran 90,
Fortran 95, and UPC source code files are parsed using
a parser for the given language to form an intermediate
representation. This intermediate representation is then
converted into a series of Program Database files (PDB files)
which provide a common representation of the semantic
structure of the source files along with mappings into the
source file showing the location of each semantic element.
TAU includes a tool, TAU instrumentor, which takes these
PDB files and, utilizing a user-specified instrumentation
specification or selective instrumentation file to determine
where instrumentation points are desired, generates modified
versions of the source files with instrumentation points
added.

However, PDT has a number of missing features,
limitations, and usability issues owing to its design and
longevity which limit its applicability to applications now
being developed for exascale and which result in users who
are not compiler experts having difficulty applying PDT to
their codes. PDT, its parsers, and the PDB file format were
originally designed for the versions of C and Fortran in use
circa 2000. While support for C++11 has been retrofitted
onto PDT, support for certain language features is awkward;
for example, C++11 lambda expressions are represented
in PDB as generic expressions and TAU therefore cannot
place instrumentation points within a lambda function.

Prepared using sagej.cls

Huck et al. 9

Wallclock Time (s) Overhead (s) Overhead as percent of original runtime
No Profiling 47.12 — —
TAU with CUPTI 60.75 13.63 28.93%
TAU with Python profiling 65.37 18.25 38.73%
TAU with CUPTI+Python 82.92 35.80 75.98%
TAU with CUPTI+Python+Sampling 97.17 50.05 106.22%
Kineto with empty handler 363.38 316.26 671.18%

Table 1. Overheads of various configurations of TAU compared to the first-party performance monitoring tool Kineto as applied to
the FashionMNIST 42 example included with PyTorch.

Additionally, new versions of compilers have introduced
vendor-specific language extensions used in header libraries,
which are not supported by PDT. The CUDA language27,
an extension of C designed for programming kernels for
execution on NVIDIA GPUs, permits mixing device and
host code within the same file. The C and C++ parsers
included with PDT do not support the CUDA extensions to
the language used in specifying or invoking device functions,
which prevents source instrumentation of the host-targeting
functions within a mixed device/host CUDA source file.
PDT’s primary C and C++ parser is based on the Edison
Design Group C/C++ compiler frontend45, a closed-source,
proprietary parser licensed by the University of Oregon
for inclusion in PDT. The terms of this license prohibit
the redistribution of source code. As a result, PDT must
be distributed primarily as binary packages, which results
in large binary sizes, inability to compile PDT optimized
for particular microarchitectures, and the need for PDT
developers to explicitly build versions of the library for each
new architecture adopted by HPC systems.

To resolve these issues, we have built a new C and C++
source instrumentor, called SALT46, based on LLVM.
LLVM47 is an open-source compiler infrastructure project
producing a common intermediate representation, LLVM IR,
for many languages and architectures; a set of compilers
producing LLVM IR; a set of tools for processing and
transforming LLVM IR; and a set of code generators which
reduce LLVM IR to native code for a variety of architectures.

It is tempting to insert instrumentation into LLVM IR.
That approach allows a single instrumentor to be used
to instrument code written in any language supported by
any LLVM compiler, and this is an approach which has
been adopted by some tools, such as Score-P48 and the
XRay Instrumentation system49. However, this approach has
the downside that the instrumented code must go through
LLVM’s code generation stage. This prevents any other
compiler, such as IBM, Cray, PGI, or other vendor-specific
compilers, from being used with code instrumented at the
LLVM IR level.

Instead, SALT operates at the compiler frontend stage,
prior to generation of LLVM IR. This enables SALT to
be used to instrument a code even if it will ultimately
be compiled by a non-LLVM compiler. SALT is built
using LLVM’s libTooling API50, which enables SALT’s
code analysis tools to closely mimic the interface of the full
compilers. This will enable the analyzers to be used as a
drop-in replacement for real compilers, allowing use with
CMake-based build systems.

SALT provides a configurable instrumentation framework
for TAU and other tools which can be invoked from the

command line, from C or C++ codes, or from Python
codes. It accepts configuration in both a YAML-based
format and in the legacy TAU selective instrumentation file
format. A default configuration is included to insert TAU
instrumentation. Other configurations are provided for the
PerfStubs51 interface which targets multiple performance
tools, for NVIDIA’s NVTX annotation library29 which tags
code regions for NVIDIA’s performance analysis tools, and
for for AMD’s ROCTX annotation library52 which serves an
equivalent function for AMD’s tools. A high-level overview
of the components is shown in Figure 5.

Figure 5. Flow of data through the SALT instrumentor. The
frontend takes in input source files and a configuration file and
processes the source file through libtooling up until the
point where the Abstract Syntax Tree (AST) is generated. The
configuration file is used to generate Instrumentation Requests.
SALT queries the AST to identify AST nodes at which
instrumentation calls should be placed. The instrumentation
library then carries out such insertions.

SALT has been used for source instrumentation of
DCA++53, a code which simulates the physics of correlated
electron systems using dynamical cluster approximation.
It is written in modern C++ and uses the CMake build
system, as well as HDF5, FFTW, BLAS, MPI, and CUDA.
We configured DCA++ using the compiler wrapper as the
compiler specified to the CMake build system. The SALT
parser was able to successfully parse the source files within
DCA++, and running DCA++ on a test input resulted in
successful generation of TAU profiles.

We then extended SALT with an additional frontend
for instrumentation of modern Fortran code. This
project, called SALT-FM, adds a frontend plugin for
LLVM’s Fortran compiler, Flang. Combined with the C
and C++ SALT instrumentors, the combined project can
handle source instrumentation of mixed-language codes
using all three languages.

Prepared using sagej.cls

10 Journal Title XX(X)

Compiler Plugin Support. Most compilers provide some
compiled-based instrumentation: for example, with GCC
or Clang, when the option -finstrument-functions
is passed to the compilation command, cyg_profile
functions are inserted after each function entry and just
before function exit. For GCC, a list of functions and files
can be passed to be excluded from the instrumentation.

The TAU LLVM plugin gives more flexibility to specify
which functions are to be instrumented. It can read an
input file, the selection file, containing a list of functions
to instrument, a list of functions to exclude from the
instrumentation, a list of files to instrument functions in,
and a list of files to exclude from the instrumentation.
It supports wildcards both in file names and in function
names. It supports C, C++ and Fortran. C++ support includes
templates, polymorphism and overloaded operators.

The selection file takes a list of functions to instrument or
to exclude from the instrumentation using ? (one character)
and # (any number of characters) as wildcards (the standard
wildcard character, *, is valid in function signatures). It
takes the function names for C and Fortran source code. In
the example below, all functions starting with the substring
check are instrumented except for check_ortho.

Listing 3: Sample selection showing detailed selection.
BEGIN INCLUDE LIST
check #
END INCLUDE LIST
BEGIN EXCLUDE LIST
c h e c k o r t h o
END EXCLUDE LIST

Because of polymorphism, C++ requires the full
prototype. The functions are demangled, and templates are
supported using wildcards or explicit types. In the example
below, all the functions specialized from the template apply
are instrumented, and only the specialization for doubles of
the template add.

Listing 4: Sample selection with C++ functions.
BEGIN INCLUDE LIST
vo id apply <#>(i n t , #** , #* , # , i n t)
vo id add<double >(i n t , d ou b l e * , do ub l e *)
END INCLUDE LIST

File selection follows the same idea, using ? and * as
wildcards. In the example below, functions defined in all files
whose names match file*.c are instrumented, except for
file4.c. Functions in files that match foo*.h are not
instrumented, and functions in bar1.h are.

Listing 5: Sample selection of file names.
BEGIN FILE INCLUDE LIST
f i l e * . c
ba r1 . h
END FILE INCLUDE LIST
BEGIN FILE EXCLUDE LIST
f i l e 4 . c
foo * . h
END FILE EXCLUDE LIST

Once the compiler has built the AST corresponding to
the input source code, a function pass goes through all

the functions of the program. At this point, we define
two behaviors between which the user can choose using
two environment variables: TAU_COMPILER_CALLSITES
and TAU_COMPILER_DEFINITIONS. Callsite instrumen-
tation inserts measurement points before and after each call
to a given function. Therefore, for each function definition
(including the main function), the plugin goes through each
function call and decides whether or not to instrument it.
Definition instrumentation inserts measurement points at the
entry and at every exit of a function. The latter inserts
instrumentation inside functions, the former inserts it around
function calls.

If the selection file specifies source files that need to
be included in or excluded from the instrumentation, call
site instrumentation decides to instrument or not based on
the file in which the function is called, whereas definition
instrumentation decides based on the file in which the
function is defined.

To avoid instrumenting very small functions, it is also
possible to set a minimum number of instructions for
a function to be instrumented using the environment
variable TAU_COMPILER_MIN_INSTRUCTION_COUNT.
We have found that a valid default value for the parameter is
50 instructions to prevent instrumentation of getter and setter
methods in C++ classes.

DyninstAPI Support. DyninstAPI54,55 can modify both
processes (dynamic instrumentation) and binary files (static
instrumentation), allowing the insertion of code snippets into
functions, loops and basic blocks. This capability of the
DyninstAPI is ideal for performance analysis tools, as it can
be used to insert instrumentation into binaries, enabling the
modification of applications without modifying the original
code nor requiring the re-compilation of the application.
The tool or part of the tool that employs Dyninst to modify
binaries is called mutator and the modified binary, mutatee.

Taking advantage of this capability, we built a tool to
instrument applications using the DyninstAPI. TAU’s muta-
tor utility (tau run) makes use of the DyninstAPI and a
pre-compiled TAU measurement library to instrument an
application. The instrumentation can be done either dynam-
ically or statically, according to the selected parameters
when executing the mutator. If dynamic instrumentation is
selected, the DyninstAPI is used to read the binary’s image,
create the application process (or processes if using MPI),
and read the symbol tables to find the list of modules and
routines from the application. Then, it inserts the TAU initial-
ization and instrumentation of the different functions found
in the modules of the application. Once the application is
modified with all the required instrumentation, the modified
application is executed. Instrumentation is inserted at the
entry point of functions and also at the exit to measure time,
or other metrics allowed by TAU, from the start to the end of
a function.

In the case of static instrumentation, the image of a
binary is read and TAU’s initialization, finalization and
instrumentation is inserted into a modified binary. This
modified binary can be used in the same way as the
binary of the original application, but its execution will
generate profiling output from TAU. Additionally, TAU
can now also employ binary rewriting to modify shared

Prepared using sagej.cls

Huck et al. 11

libraries. The mutator reads the shared library and inserts
instrumentation into the binary of the selected shared library.
Then, the path of the modified library is included into the
environmental variable LD LIBRARY PATH, which will load
the instrumented library when the application is executed.
However, in this case, the initialization of TAU is not inserted
into the library. Therefore, the user must either execute a
TAU instrumented application or execute with tau exec to
obtain the profiling information.

Rewriting of binaries is the preferred option if the
objective is profiling an application multiple times, as
the overhead of modifying the application to insert
instrumentation will only appear once, when modifying
the binary, whereas dynamic instrumentation requires the
modification of an application at every execution.

TAU’s mutator also accepts selective instrumentation,
where a file is given as an input parameter. The selective
instrumentation file can contain different functions, divided
into two different labels: a) INCLUDE LIST, where a list of
functions to measure will be written and only those functions
will be instrumented; b) EXCLUDE LIST, as opposed to
the include list, the functions that appear in the list do not
require instrumentation, so if found, no instrumentation will
be inserted into them.

Integration

Spack and E4S
The Extreme-scale Scientific Software Stack (E4S)56 is a
curated ecosystem of HPC tools and libraries developed
under ECP. Software included in E4S provides a Spack57

package which enables installation of the application and
all of its dependencies via the Spack package manager.
E4S provides binary repositories where Spack can obtain
pre-built applications to accelerate installation, complete
Spack environment definitions tailored for deployment both
on general target platforms and at specific HPC centers,
containerized Spack environments optimized for a variety
of hardware platforms and accelerators, and Continuous
Integration (CI) testing and validation for the software
included in each E4S release.

TAU has been a member of the E4S project since its
inception and has made a continuous effort to model
full participation in E4S. TAU’s developers have made it
a priority to keep the TAU Spack package up to date, adding
new versions and Spack variants for new TAU features as
they are released. The TAU Spack package was also an early
adopter both of Spack’s internal package testing capabilities
and the E4S test suite which performs validation on Spack-
installed software. TAU is rigorously tested on the compilers,
compiler architectures and hardware accelerators prioritized
by E4S.

PerfStubs
The PerfStubs API51 enables application developers to
include generic timer stubs in their code base. This
means that application developers can now permanently
incorporate specialized knowledge of their application’s
performance characteristics into the application rather
than relying on automatic compile-time instrumentation

which may add superfluous timers or neglect critical code
regions without additional input from a performance analyst.
The PerfStubs API is activated at link time and connected
to a performance profiling library such as TAU when
performance data is desired, making full use of the chosen
performance library’s runtime features and output options.
When inactive, PerfStubs has no effect on the timing or
behavior of the instrumented application. PerfStubs provides
this functionality through a plugin interface that detects
that a tool has been loaded and has defined the expected
function symbols to provide callback support. TAU has
added implementations of the PerfStubs symbols.

PerfStubs timer hooks have been incorporated into
Camtimers58, PETSc59, Ginkgo60 and ADIOS261. This
has enabled the collection of TAU performance data from
runs using these libraries without relying on compile time
instrumentation.

Plugin support for CODAR: ADIOS2 and
Chimbuko

Figure 6. XGC Performance data in Python. The figures show
real time updates of CPU utilization, memory usage, I/O usage
and top timers in each MPI rank of the simulation.

One of the key developments for the TAU measurement
library was a new feature added to allow custom plugins
to integrate with the TAU profiling and tracing events. The
plugin API allows for functional extensions to TAU, and
several plugins have been written for event filtering, new
output file and database formats, streaming performance
data, and integration with other libraries. For example, TAU
is now integrated with the Adaptable Input/Output (I/O)
System (ADIOS2) in two different ways.

In addition to the PerfStubs integration so that TAU
can measure ADIOS2 performance, TAU now can stage
performance data using ADIOS2. This is valuable in
several ways, one of which is that it allows for streaming
real-time performance measurement of running applications
using the ADIOS2 Python query API for in situ analysis.
Figure 6 shows an example of visualizing TAU profile data
using Python analysis. Each time that a major application
iteration is completed, the ADIOS data output is updated, and
the ADIOS2 Python reader API will read the next iteration of
performance data, updating the display. Experiments of the
WDMApp XGC fusion simulation were run with 256 MPI
ranks on the Summit system and the performance data was
routed through ADIOS2 and plotted with Python libraries,
showing the iterative evolution of the performance of the
simulation.

Prepared using sagej.cls

12 Journal Title XX(X)

Another use of streamed TAU performance data is
the Chimbuko trace analysis tool62. Chimbuko performs
anomaly detection on TAU trace data streamed over
ADIOS2, and feeds that analysis to a visualization
framework.

SYMBIOMON and SOMA
In further support of online observability of long-running or
performance data-intensive HPC applications, two plugins
were added to integrate with the SYMBIOMON63 and
SOMA64,65 frameworks. Both integrations make use of
the MOCHI66 underlying architecture to publish TAU
performance data to the frameworks via remote procedure
call (RPC). These highly configurable frameworks allow
for online collection, aggregation, and analysis of the
performance profiles gathered by TAU. SOMA, as a second
generation version of SYMBIOMON, restructures TAU
profiles into a canonical data model which improves upon
two things: (1) it allows for flexible integration with other
collection and analysis tools and (2) reduces the RPC
overhead by enabling more control over how much data,
and when, it is sent. This TAU data is then aggregated and
analyzed by the framework and any subscribed analyzer tools
in order to support online decision-making such as ending or
changing the HPC simulation.

ECP Application Examples
As mentioned throughout the paper, TAU has been used
with several of the ECP projects over the course of the
project. This section presents a sample of the of applications
and libraries that have utilized TAU for performance
measurement and optimization while transitioning to the
exascale systems.

Nalu-Wind Performance Analysis on Summit
(ExaWind)

Figure 7. Instrumentation, MPI, Kokkos and sample profile
data of Nalu-Wind visualized in ParaProf.

The ECP ExaWind project’s scientific goal is to advance
fundamental understanding of the flow physics that govern
whole wind plant performance, including wake formation,
complex terrain impacts, and turbine-turbine interaction
effects67. Nalu-Wind68 is a generalized, unstructured,
incompressible flow solver for wind farm simulations at
exascale.

Nalu-Wind was measured with TAU using multi-
level instrumentation (MPI, Kokkos) on the Summit

supercomputer. Figure 7 shows a view of the TAU profile
in the ParaProf profile viewer, using the tree-table view.
The tree-table is used to show call path hierarchies in the
performance data, as well as inclusive and exclusive profile
measurements. This example also uses sampling, showing
how the sample data is integrated into the instrumented timer
hierarchy.

ExaFEL Performance Analysis on Summit

Figure 8. Python CPU measurement of Spinafel on Summit.

Figure 9. Measurement of Spinafel CUDA API calls on Summit.

The ECP ExaFEL challenge problem is the creation
of an exascale-based data analysis workflow for serial
femtosecond crystallography69. One of the goals of the
project is to perform analysis of molecular structure x-
ray diffraction data generated by the Linac Coherent Light
Source (LCLS).

Figure 8 and 9 show the CPU and GPU measurements
of unmodified Spinafel launched with tau python on
the Summit supercomputer. This example demonstrates
support in TAU for measuring MPI, Python, CUPTI, and
event based sampling even in the Thrust solver library.

AMReX Performance Analysis with TAU
The AMReX (AMR for the Exascale) project supports
the development of block-structured AMR algorithms
for solving systems of partial differential equations on
exascale architectures70. Several ECP application projects
and software use AMReX, including WarpX, ExaStar,
ExaSky, MFIX-Exa, and AMR-Wind.

TAU can capture all heterogeneous events used
by AMReX, including support for MPI, pthreads,
OpenACC, CUDA, and integrated sampling data.

Prepared using sagej.cls

Huck et al. 13

Figure 10. TAU measurement of an AMReX application using
OpenACC.

Figure 10 shows a profile of an AMReX application that
includes host-side OpenACC calls and sample data.

CANDLE Performance Measurement
The CANcer Distributed Learning Environment (CANDLE)
Project focuses on large-scale machine learning problems
for cancer applications. Specifically, the CANDLE challenge
problem is to solve large-scale machine learning problems
for three cancer-related pilot applications: the drug response
problem, RAS pathway problem, and treatment strategy
problem71. The project uses a Python-based runtime that
launches many machine learning tasks.

TAU uses Python profiling as well as sampling to
measure the TensorFlow applications on HPC systems.
Figure 11 shows the now familiar tree table view along with
a distribution of times spent in one function across all threads
of execution.

ECP Codesign Center for Particle Applications
(COPA)
The Co-design Center for Particle Applications (CoPA)
focuses on co-design of several “sub-motifs,” includ-
ing short-range particle-particle interactions, long-range
particle-particle interactions, particle-in-cell (PIC) methods,
and O(N) complexity electronic structure and quantum MD
(QMD) algorithms72. The CoPA project has developed
a common library for particle methods called the CoPA
Cabana Particle Tookit73.

CabanaMD is a molecular dynamics proxy app built with
Kokkos and the CoPa Cabana Particle Toolkit. Figure 12
shows an example of CabanaMD running on the Summit
supercomputer with NVIDIA V100 GPUs. This example
demonstrates the use of Kokkos profiling API, MPI,
CUPTI, and sampling.

WDMApp
The Whole Device Model Application (WDMApp) project
aims to develop a high-fidelity model of magnetically

confined fusion plasmas, which is urgently needed to plan
future physical experiments and optimize the design of future
next-step fusion facilities74.

The TAU team worked closely with the WDMApp project
to help with overall performance analysis and porting of the
XGC simulation to the Frontier supercomputer75. PerfStubs
integration with the Camtimers library, along with MPI,
Kokkos, HIP, OpenMP, ADIOS2, and sampling support
were used with XGC. The HIP support in TAU was crucial
in helping to identify computation kernels with high register
pressure and testing code modifications that provided better
performance. Finally, having a portable measurement system
allowed us to compare across platforms, evaluating the
performance on both Summit and Frontier.

Conclusion
For performance analysis tools to stay relevant and
useful it is critical that they maintain compatibility
with developing software and hardware capabilities. The
bleeding edge exascale platforms targeted by the ECP
and the complex software applications being developed
there were challenging targets for TAU to support. In
addition to achieving significant new functionality that
will be beneficial to application developers at DOE sites,
the effort advanced TAU’s modernization as a robust,
production-quality performance tool system for the wider
HPC community.

The success of TAU’s improvement and functional
expansion under the ECP was achieved not just by following
a mandate and making use of technological resources
afforded by the effort. Access to and collaboration with
the teams responsible for hardware development, application
and tool development and facilities management was critical
both for overcoming technical challenges and maintaining
the direction of TAU’s development over the course
of the project. Facilitation of interaction between these
groups afforded by ECP was incredibly valuable. As TAU
continues to be improved to support the performance analysis
requirements of future use cases it, and by extension its users,
will benefit both from the technical achievements and the
community development that occurred under the ECP.

Acknowledgements

This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security
Administration. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.
This research used resources of the Argonne Leadership Computing
Facility, a U.S. Department of Energy (DOE) Office of Science user
facility at Argonne National Laboratory and is based on research
supported by the U.S. DOE Office of Science-Advanced Scientific
Computing Research Program, under Contract No. DE-AC02-
06CH11357. The material on Python updates and deep learning
framework integration is based upon work supported by the U.S.
Department of Energy, Office of Science, Office of SBIR & STTR
Programs under Award Number DE-SC-0019700. The material on
C and C++ source instrumentation is based upon work supported

Prepared using sagej.cls

14 Journal Title XX(X)

Figure 11. On the left, the profile of function Eigen::internal::gemm pack rhs across all threads of execution is shown.
On the right side is a view of the sampling data collected in the application run.

Figure 12. CabanaMD profile data from the Summit
supercomputer, visualized in ParaProf.

by the U.S. Department of Energy, Office of Science, Office of
SBIR & STTR Programs under Award Number DE-SC-0022511.
The material on Fortran source instrumentation is based on work
supported by the National Aeronautics and Space Administration
under Contract Number 80NSSC24PB401.

References

1. Younge AJ and Gamblin T. ECP packaging technologies. 2019;
URL https://www.osti.gov/biblio/1646052.

2. The Exascale Computing Project. The Exascale Computing
Project. https://www.exascaleproject.org/.

3. Shende SS and Malony AD. The TAU parallel performance
system. The International Journal of High Performance
Computing Applications 2006; 20(2): 287–311. DOI:10.
1177/1094342006064482. URL https://doi.org/10.

1177/1094342006064482. https://doi.org/10.

1177/1094342006064482.
4. The Exascale Computing Project. PROTEAS-

TUNE. https://www.exascaleproject.org/

research-project/proteas-tune/.
5. The Exascale Computing Project. The Exascale

Computing Project Applications. https://www.

exascaleproject.org/research/#application.
6. The Exascale Computing Project. The Exascale Com-

puting Project Software Technology. https://www.

exascaleproject.org/research/#software.
7. Bertran R, Sugawara Y, Jacobson HM et al. Application-level

power and performance characterization and optimization on

IBM Blue Gene/Q systems. IBM Journal of Research and
Development 2013; 57(1/2): 4–1.

8. Rosales C, Cazes J, Milfeld K et al. A comparative study of
application performance and scalability on the Intel Knights
Landing processor. In High Performance Computing: ISC
High Performance 2016 International Workshops, ExaComm,
E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, Pˆ 3MA, VHPC,
WOPSSS, Frankfurt, Germany, June 19–23, 2016, Revised
Selected Papers 31. Springer, pp. 307–318.

9. Oak Ridge National Laboratory. The Frontier supercomputer.
https://www.olcf.ornl.gov/frontier/.

10. Argonne National Laboratory. The Aurora supercomputer.
https://www.anl.gov/aurora.

11. Buck B and Hollingsworth J. An API for runtime code
patching. The International Journal of High Performance
Computing Applications 2000; 14(4): 317–329. URL http:

//citeseer.ist.psu.edu/buck00api.html.
12. Charif-Rubial A, Barthou D, Valensi C et al. MIL: A

language to build program analysis tools through static
binary instrumentation. In Proc. 20th Annual International
Conference on High Performance Computing, HiPC 2013.
IEEE, pp. 206–215.

13. Laurenzano M, Tikir M, Carrington L et al. PEBIL:
Efficient static binary instrumentation for Linux. In
Performance Analysis of Systems Software (ISPASS), 2010
IEEE International Symposium on. pp. 175–183. DOI:10.1109/
ISPASS.2010.5452024.

14. Malony AD and Huck KA. General hybrid parallel profiling.
In 2014 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing. pp. 204–212.
DOI:10.1109/PDP.2014.38.

15. Terpstra D, Jagode H, You H et al. Collecting performance data
with PAPI-C. In Tools for High Performance Computing 2009.
Springer, 2010. pp. 157–173.

16. Treibig J, Hager G and Wellein G. Likwid: A lightweight
performance-oriented tool suite for x86 multicore environ-
ments. In 2010 39th international conference on parallel
processing workshops. IEEE, pp. 207–216.

17. Bell R, Malony AD and Shende S. Paraprof: A portable,
extensible, and scalable tool for parallel performance profile
analysis. In Euro-Par 2003 Parallel Processing: 9th
International Euro-Par Conference Klagenfurt, Austria, August

Prepared using sagej.cls

https://www.osti.gov/biblio/1646052
https://www.exascaleproject.org/
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://www.exascaleproject.org/research-project/proteas-tune/
https://www.exascaleproject.org/research-project/proteas-tune/
https://www.exascaleproject.org/research/#application
https://www.exascaleproject.org/research/#application
https://www.exascaleproject.org/research/#software
https://www.exascaleproject.org/research/#software
https://www.olcf.ornl.gov/frontier/
https://www.anl.gov/aurora
http://citeseer.ist.psu.edu/buck00api.html
http://citeseer.ist.psu.edu/buck00api.html

Huck et al. 15

26-29, 2003 Proceedings 9. Springer, pp. 17–26.
18. Huck K, Malony A, Bell R et al. Design and implementation of

a parallel performance data management framework. In 2005
International Conference on Parallel Processing (ICPP’05).
pp. 473–482. DOI:10.1109/ICPP.2005.29.

19. Huck KA, Malony AD, Shende S et al. Knowledge support and
automation for performance analysis with PerfExplorer 2.0.
Scientific programming 2008; 16(2-3): 123–134.

20. Knüpfer A, Brunst H, Doleschal J et al. The Vampir
performance analysis tool-set. In Tools for High Performance
Computing. Springer, 2008. pp. 139–155.

21. Mohr B, Malony AD, Shende S et al. Design and prototype
of a performance tool interface for OpenMP. The Journal of
Supercomputing 2002; 23: 105–128.

22. Exascale Computing Project. ECP proxy applications:
miniQMC. https://proxyapps.exascaleproject.
org/app/miniqmc/.

23. Oak Ridge National Laboratory. Frontier. https:

//www.olcf.ornl.gov/olcf-resources/

compute-systems/frontier/.
24. Eschweiler D, Wagner M, Geimer M et al. Open Trace

Format 2: The next generation of scalable trace formats and
support libraries. In International Conference on Parallel
Computing. URL https://api.semanticscholar.

org/CorpusID:37062839.
25. Denny JE, Lee S and Vetter JS. Clacc: Translating OpenACC

to OpenMP in Clang. In 2018 IEEE/ACM 5th Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC). IEEE,
pp. 18–29.

26. Coti C, Denny JE, Huck K et al. OpenACC profiling
support for Clang and LLVM using Clacc and TAU. In
2020 IEEE/ACM International Workshop on HPC User
Support Tools (HUST) and Workshop on Programming and
Performance Visualization Tools (ProTools). IEEE, pp. 38–48.

27. Kirk D et al. NVIDIA CUDA software and GPU parallel
computing architecture. In ISMM, volume 7. pp. 103–104.

28. NVIDIA. Cuda profiling tools interface, 2020. https:

//docs.nvidia.com/cuda/cupti/index.html.
29. NVIDIA. NVIDIA Tools Extension (NVTX). https://

docs.nvidia.com/nvtx/index.html.
30. Malony AD, Biersdorff S, Shende S et al. Parallel performance

measurement of heterogeneous parallel systems with GPUs. In
2011 international conference on parallel processing. IEEE,
pp. 176–185.

31. NVIDIA. NVIDIA Management Library (NVML),
2020. https://developer.nvidia.com/

nvidia-management-library-nvml.
32. AMD. AMD CDNA™2 Architecture. https://www.

amd.com/content/dam/amd/en/documents/

instinct-business-docs/white-papers/

amd-cdna2-white-paper.pdf.
33. Intel Corporation. Level Zero. https://dgpu-docs.

intel.com/technologies/level-zero.html.
34. Trott CR, Lebrun-Grandié D, Arndt D et al. Kokkos 3:

Programming model extensions for the exascale era. IEEE
Transactions on Parallel and Distributed Systems 2022; 33(4):
805–817. DOI:10.1109/TPDS.2021.3097283.

35. Beckingsale DA, Burmark J, Hornung R et al. Raja: Portable
performance for large-scale scientific applications. In 2019
ieee/acm international workshop on performance, portability
and productivity in hpc (p3hpc). IEEE, pp. 71–81.

36. Ramesh S, Shende S, Malony A et al. MPI performance
engineering with the MPI tool interface: The integration of
MVAPICH and TAU. Parallel Computing 2018; 77.

37. Ramesh S, Mahéo A, Shende S et al. MPI performance
engineering with the MPI tool interface: the integration of
MVAPICH and TAU. In Proceedings of the 24th European
MPI Users’ Group Meeting. pp. 1–11.

38. Karlin I, Keasler J and Neely R. Lulesh 2.0 updates and
changes. Technical Report LLNL-TR-641973, 2013.

39. Abadi M, Agarwal A, Barham P et al. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available
from tensorflow.org.

40. Paszke A, Gross S, Massa F et al. PyTorch: an imperative style,
high-performance deep learning library. Red Hook, NY, USA:
Curran Associates Inc., 2019.

41. Chollet F et al. Keras. https://keras.io, 2015.
42. Xiao H, Rasul K and Vollgraf R. Fashion-MNIST: a novel

image dataset for benchmarking machine learning algorithms,
2017. 1708.07747.

43. Kineto PyTorch Profiler. https://github.com/

pytorch/kineto.
44. Lindlan KA, Cuny J, Malony AD et al. A tool framework for

static and dynamic analysis of object-oriented software with
templates. In Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing. SC ’00, IEEE Computer Society. ISBN
0780398025, p. 49.

45. Edison Design Group C++ Frontend. https://www.edg.
com/c.

46. ParaTools, Inc. SALT: An LLVM-based Source Analysis
Tookit for HPC, 2025. URL https://github.com/

ParaToolsInc/salt.
47. Lattner C and Adve V. LLVM: A compilation framework for

lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO
2004. IEEE, pp. 75–86.

48. Psallidas F. Physical Plan Instrumentation in Databases:
Mechanisms and Applications. PhD Thesis, Columbia
University, 2019.

49. Berris DM, Veitch A, Heintze N et al. Xray: A function call
tracing system, 2016.

50. Duffy EB, Malloy BA and Schaub S. Exploiting the Clang
AST for analysis of C++ applications. In Proceedings of the
52nd annual ACM southeast conference.

51. Boehme D, Huck K, Madsen J et al. The case for a
common instrumentation interface for HPC codes. In
2019 IEEE/ACM International Workshop on Programming
and Performance Visualization Tools (ProTools). Los
Alamitos, CA, USA: IEEE Computer Society, pp. 33–
39. DOI:10.1109/ProTools49597.2019.00010. URL
https://doi.ieeecomputersociety.org/10.

1109/ProTools49597.2019.00010.
52. AMD. ROCTX: Application Code Annota-

tion. https://docs.amd.com/bundle/

ROCTracer-User-Guide-v5.0-/page/ROCTX_

Application_Code_Annotation.html.
53. Hähner UR, Alvarez G, Maier TA et al. DCA++: A software

framework to solve correlated electron problems with modern
quantum cluster methods. Computer Physics Communications
2020; 246: 106709.

Prepared using sagej.cls

https://proxyapps.exascaleproject.org/app/miniqmc/
https://proxyapps.exascaleproject.org/app/miniqmc/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/frontier/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/frontier/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/frontier/
https://api.semanticscholar.org/CorpusID:37062839
https://api.semanticscholar.org/CorpusID:37062839
https://docs.nvidia.com/cuda/cupti/index.html
https://docs.nvidia.com/cuda/cupti/index.html
https://docs.nvidia.com/nvtx/index.html
https://docs.nvidia.com/nvtx/index.html
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://dgpu-docs.intel.com/technologies/level-zero.html
https://dgpu-docs.intel.com/technologies/level-zero.html
https://www.tensorflow.org/
https://keras.io
1708.07747
https://github.com/pytorch/kineto
https://github.com/pytorch/kineto
https://www.edg.com/c
https://www.edg.com/c
https://github.com/ParaToolsInc/salt
https://github.com/ParaToolsInc/salt
https://doi.ieeecomputersociety.org/10.1109/ProTools49597.2019.00010
https://doi.ieeecomputersociety.org/10.1109/ProTools49597.2019.00010
https://docs.amd.com/bundle/ROCTracer-User-Guide-v5.0-/page/ROCTX_Application_Code_Annotation.html
https://docs.amd.com/bundle/ROCTracer-User-Guide-v5.0-/page/ROCTX_Application_Code_Annotation.html
https://docs.amd.com/bundle/ROCTracer-User-Guide-v5.0-/page/ROCTX_Application_Code_Annotation.html

16 Journal Title XX(X)

54. Williams WR, Meng X, Welton B et al. Dyninst and MRNet:
Foundational infrastructure for parallel tools. In Knüpfer
A, Hilbrich T, Niethammer C et al. (eds.) Tools for High
Performance Computing 2015. Cham: Springer International
Publishing. ISBN 978-3-319-39589-0, pp. 1–16.

55. Bernat AR and Miller BP. Anywhere, any-time binary
instrumentation. In Proceedings of the 10th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools.
PASTE ’11, New York, NY, USA: Association for Computing
Machinery. ISBN 9781450308496, p. 9–16. DOI:10.1145/
2024569.2024572. URL https://doi.org/10.1145/

2024569.2024572.
56. E4S Project. The Extreme-Scale Scientific Software Stack.

https://e4s-project.github.io/.
57. Gamblin T, LeGendre M, Collette MR et al. The Spack

package manager: Bringing order to HPC software chaos. In
Supercomputing 2015 (SC’15). Supercomputing 2015 (SC’15),
Austin, Texas, USA. DOI:10.1145/2807591.2807623. URL
https://github.com/spack/spack. LLNL-CONF-
669890.

58. WDMApp. Camtimers, 2024. URL https://github.

com/wdmapp/camtimers.
59. Abhyankar S, Brown J, Constantinescu EM et al. PETSc/TS:

A modern scalable ODE/DAE solver library. arXiv preprint
arXiv:180601437 2018; .

60. Anzt H, Cojean T, Chen YC et al. Ginkgo: A high performance
numerical linear algebra library. Journal of Open Source
Software 2020; 5(52): 2260.

61. Godoy WF, Podhorszki N, Wang R et al. ADIOS 2:
The adaptable input output system. a framework for high-
performance data management. SoftwareX 2020; 12: 100561.

62. Kelly C, Ha S, Huck K et al. Chimbuko: A workflow-
level scalable performance trace analysis tool. In ISAV’20 In
Situ Infrastructures for Enabling Extreme-Scale Analysis and
Visualization. 2020. pp. 15–19.

63. Ramesh S, Ross RB, Dorier M et al. SYMBIOMON: A high-
performance, composable monitoring service. 2021 IEEE 28th
International Conference on High Performance Computing,
Data, and Analytics (HiPC) 2021; : 332–342.

64. Yokelson D, Lappi O, Ramesh S et al. SOMA: Observability,
monitoring, and in situ analytics for exascale applications.
Concurr Comput Pract Exp 2024; 36.

65. Yokelson D, Titov M, Ramesh S et al. Enabling performance
observability for heterogeneous hpc workflows with SOMA. In

International Conference on Parallel Processing.
66. Ross RB, Amvrosiadis G, Carns PH et al. Mochi: Composing

data services for high-performance computing environments.
Journal of Computer Science and Technology 2020; 35: 121–
144. URL https://api.semanticscholar.org/

CorpusID:210926325.
67. The Exascale Computing Project. ExaWind. https://

www.exascaleproject.org/research-project/

exawind/.
68. Sharma A, Brazell MJ, Vijayakumar G et al. Exawind:

Open-source cfd for hybrid-rans/les geometry-resolved wind
turbine simulations in atmospheric flows. Wind Energy 2024;
27(3): 225–257. DOI:https://doi.org/10.1002/we.2886. URL
https://onlinelibrary.wiley.com/doi/abs/

10.1002/we.2886. https://onlinelibrary.

wiley.com/doi/pdf/10.1002/we.2886.
69. The Exascale Computing Project. ExaFel. https://

www.exascaleproject.org/research-project/

exafel/.
70. The Exascale Computing Project. Adap-

tave Mesh Refinement. https://www.

exascaleproject.org/research-project/

adaptive-mesh-refinement/.
71. The Exascale Computing Project. CANDLE. https://

www.exascaleproject.org/research-project/

candle/.
72. The Exascale Computing Project. Parti-

cle Based Applications. https://www.

exascaleproject.org/research-project/

particle-based-applications/.
73. Slattery S, Reeve ST, Junghans C et al. Cabana: A performance

portable library for particle-based simulations. Journal of Open
Source Software 2022; 7(72): 4115.

74. The Exascale Computing Project. WDMApp. https://

www.exascaleproject.org/research-project/

wdmapp/.
75. Suchyta E, Klasky S, Podhorszki N et al. The Exas-

cale Framework for High Fidelity coupled Simulations
(EFFIS): Enabling whole device modeling in fusion sci-
ence. The International Journal of High Performance
Computing Applications 2022; 36(1): 106–128. DOI:10.
1177/10943420211019119. URL https://doi.org/10.

1177/10943420211019119. https://doi.org/

10.1177/10943420211019119.

Prepared using sagej.cls

https://doi.org/10.1145/2024569.2024572
https://doi.org/10.1145/2024569.2024572
https://e4s-project.github.io/
https://github.com/spack/spack
https://github.com/wdmapp/camtimers
https://github.com/wdmapp/camtimers
https://api.semanticscholar.org/CorpusID:210926325
https://api.semanticscholar.org/CorpusID:210926325
https://www.exascaleproject.org/research-project/exawind/
https://www.exascaleproject.org/research-project/exawind/
https://www.exascaleproject.org/research-project/exawind/
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2886
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2886
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2886
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2886
https://www.exascaleproject.org/research-project/exafel/
https://www.exascaleproject.org/research-project/exafel/
https://www.exascaleproject.org/research-project/exafel/
https://www.exascaleproject.org/research-project/adaptive-mesh-refinement/
https://www.exascaleproject.org/research-project/adaptive-mesh-refinement/
https://www.exascaleproject.org/research-project/adaptive-mesh-refinement/
https://www.exascaleproject.org/research-project/candle/
https://www.exascaleproject.org/research-project/candle/
https://www.exascaleproject.org/research-project/candle/
https://www.exascaleproject.org/research-project/particle-based-applications/
https://www.exascaleproject.org/research-project/particle-based-applications/
https://www.exascaleproject.org/research-project/particle-based-applications/
https://www.exascaleproject.org/research-project/wdmapp/
https://www.exascaleproject.org/research-project/wdmapp/
https://www.exascaleproject.org/research-project/wdmapp/
https://doi.org/10.1177/10943420211019119
https://doi.org/10.1177/10943420211019119
https://doi.org/10.1177/10943420211019119
https://doi.org/10.1177/10943420211019119

	Introduction
	Background: TAU Design
	New TAU Features Developed Under ECP
	OpenMP Tools Support
	OpenMP Target Offload.

	OpenACC and Clacc Support
	GPU Measurement Support
	NVIDIA CUDA.
	AMD ROCm/HIP.
	Intel oneAPI.
	Kokkos.

	MPI Tools Information Interface (MPI_T)
	Python Updates
	Thread Scalability Improvements.
	Deep Learning Framework Integration.

	Instrumentation Methods
	Source Based Instrumentation.
	Compiler Plugin Support.
	DyninstAPI Support.

	Integration
	Spack and E4S
	PerfStubs
	Plugin support for CODAR: ADIOS2 and Chimbuko
	SYMBIOMON and SOMA

	ECP Application Examples
	Nalu-Wind Performance Analysis on Summit (ExaWind)
	ExaFEL Performance Analysis on Summit
	AMReX Performance Analysis with TAU
	CANDLE Performance Measurement
	ECP Codesign Center for Particle Applications (COPA)
	WDMApp

	Conclusion

