
Kokkos Tools:
Kokkos support in the TAU and APEX portable performance 
measurement tools
Kevin A. Huck

Oregon Advanced Computing Institute for Science and Society (OACISS)

http://www.nic.uoregon.edu/~khuck/kokkos/KUG2023



2

TAU Performance System



3

TAU Performance System

§ Tuning and Analysis Utilities (29+ year project)
§ Integrated performance toolkit:

– Multi-level performance instrumentation
– Highly configurable
– Widely ported performance profiling / tracing system
– Portable (java, python) visualization / exploration / analysis tools

§ Supports all major HPC programming models
§ MPI/SHMEM, OpenMP, OpenACC, CUDA, HIP, SYCL/OneAPI, Kokkos...
§ Support for ML/AI frameworks: TensorFlow, pyTorch, Horovod
§ Integrated with PAPI, LIKWID for hardware counter support
§ https://tau.uoregon.edu or https://github.com/UO-OACISS/tau2 (public mirror)

https://tau.uoregon.edu/
https://github.com/UO-OACISS/tau2


4

Performance Measurement

§ Timers
– Requires instrumentation of some kind

• Manual, automated
• Source, compiler provided, binary
• Library callbacks, API wrappers, weak symbol replacement

– Simple to implement
§ Sampling

– Requires specialized system libraries / support
• Periodic signals, signal handler
• Call stack unwinding

– No modification to executable/library needed
– Potential to interfere with system support (signal handlers)
– Can mix with timers to generate a hybrid profile



5

Profiling and Tracing

§ Profiling: how much time was spent in each measured 
function on each thread in each process?
– Collapses the time axis
– No ordering or causal event information
– Small summary per thread/process, regardless of 

execution time – only grows with number of timers & 
threads/processes

§ Tracing: record all function entry & exit events on a timeline
– Detailed view of what happened
– The longer the program runs, the bigger the trace



6

TAU Analysis Tools: ParaProf, Vampir

Vampir: https://vampir.eu  

MPI Communication Matrix

Profile view

3D Profile view

Vampir trace viewer

https://vampir.eu/


7

Kokkos support in TAU – since February, 2017

§ TAU implements the Kokkos Profiling API (Kokkos_Profiling_C_Interface.h)
§ TAU sets an environment variable KOKKOS_PROFILE_LIBRARY to tell Kokkos that it 

should enable profiling and enable function callbacks to the TAU implementations
§ TAU implements

– kokkosp_[init|finalize]_library
– kokkosp_[begin|end]_parallel_[for|scan|reduce]
– kokkosp_[push|pop]_profile_region

§ Names for regions are passed to the tools to provide intelligent labels
§ In addition, TAU also implements support for native Pthreads, OpenMP, OpenACC, 

CUDA, HIP, SYCL back-end measurement – no code changes necessary
§ Fun fact: if you have a Raja application, and Raja is configured with                                        
-DRAJA_ENABLE_RUNTIME_PLUGINS, Raja implements the same callback API!



8

TAU Example – Kokkos Lulesh (from kokkos-miniapps)

Main thread launching kernels Virtual thread with CUDA activity

Intel Xeon system with NVIDIA A100, size 256, 100 iterations, one rank



9

PerfStubs side note…

§ PerfStubs is a “frictionless” instrumentation library
– https://github.com/UO-OACISS/perfstubs
– One source file, three headers
– Provides a plugin interface for performance tools
– Can be compiled away if desired

§ Integrated into several libraries (so far) as a git submodule
– CAMTIMERS
– PETSc
– Ginkgo
– ADIOS2
– Others?

§ Provides runtime integration with TAU & APEX

Boehme, Huck, Madsen, Weidendorfer,
“The Case for a Common Instrumentation Interface for HPC Codes”
https://doi.org/10.1109/ProTools49597.2019.00010, 2019

https://github.com/UO-OACISS/perfstubs
https://doi.org/10.1109/ProTools49597.2019.00010


10

APEX



11

Autonomic Performance Environment for Exascale (APEX)

§ Autonomic Performance Environment for eXascale
§ Performance Measurement
§ Runtime Adaptation
§ Designed for AMT runtimes (HPX)

– but works with conventional parallel models
§ Focus on task dependency graph, not calling context graph
§ Supports HPX, C/C++ threads, OpenMP, OpenACC, Kokkos, Raja, CUDA, HIP, SYCL, 

StarPU... Working on YAKL, Iris
§ https://github.com/UO-OACISS/apex and https://github.com/khuck/apex-tutorial
§ Active Harmony* (Nelder Mead), Simulated Annealing, hill climbing for parametric 

search methods
https://doi.org/10.1109/ESPM256814.2022.00008 : “Broad Performance Measurement 
Support for Asynchronous Multi-Tasking with APEX”, Huck, ESPM, 2022

https://github.com/UO-OACISS/apex
https://github.com/khuck/apex-tutorial
https://doi.org/10.1109/ESPM256814.2022.00008


12

APEX example – Octo-Tiger (Octree astrophysics in HPX, Kokkos)

Comparing subgrid sizes and relative kernel 
performance with CUPTI device activity

Tracking GPU memory usage with CUPTI

Monitoring GPU utilization with NVML library

Full task tree (above) and task graph 
(below) showing task dependencies

https://github.com/STEllAR-GROUP/octotiger 
https://github.com/STEllAR-GROUP/hpx 

https://github.com/STEllAR-GROUP/octotiger
https://github.com/STEllAR-GROUP/hpx


13

0

4

8

12

16

20

24

28

32

36

40

44

48

0 146 292 438 584 730 876 1022 1168 1314 1460
0

20

40

60

80

100

C
on
cu
rre
nc
y

Po
w
er

Time

gravity_solver_step1
gravity_solver_step3
kokkos_hydro_solver

local_step::execute_step
node_server::nonrefined_step::compute_fluxes

other
thread cap

power

Octotiger on Fugaku – recent result

Periodic sampling of timers scheduled by the HPX runtime



14

Example: XGC (tokamak plasma fusion PIC) on Frontier, 512 ranks

§ Uses support for MPI, OpenMP-Tools, PerfStubs, Kokkos, Hip
§ Post-processing view of MAIN_LOOP subtree, only with accumulated times > 5.0 

seconds (only 72 nodes of 6298 of full tree)
§ Red: MPI, blue: other, intensity = % of total subtree

MAIN_LOOP
calls: 10.0
threads: 1.0
time: 377.6822725056816

F0_GRID
calls: 10.0
threads: 1.0
time: 106.05810388313476

IPC_LOOP
calls: 20.0
threads: 1.0
time: 235.68168214416602

SOLVE_FOR_FIELDS
calls: 10.0
threads: 1.0
time: 28.717862326375

REBALANCE
calls: 10.0
threads: 1.0
time: 5.708728209896648

F_SOURCE
calls: 10.0
threads: 1.0
time: 106.05806103628515

F_COLLISON
calls: 5.0
threads: 1.0
time: 97.17834542045313

F_COLL_MULT_CONV_IO
calls: 5.0
threads: 1.0
time: 35.275414950717106

F_COL_MULTI_SP
calls: 5.0
threads: 1.0
time: 64.33351162414979

F_COLL_MULT_RED2
calls: 5.0
threads: 1.0
time: 35.27522193508114

int MPI_Allreduce(const void *, void *, int, MPI_Datatype, MPI_Op, MPI_Comm)
calls: 5.0
threads: 1.0
total send bytes: 19958420.0
mean send bytes: 3991684.0
mode send bytes: 3991684.0
total recv bytes: 5109355520.0
mean recv bytes: 1021871104.0
mode recv bytes: 1021871104.0
bytes per call: 1025862788.0
time: 35.275029179186404

MPI Collective Sync
calls: 5.0
threads: 1.0
time: 35.818367640779776

COL_F_CORE_M
calls: 316.8582995951417
threads: 1.0
time: 63.874274393382585

COL_F_CORE_M_LOOP
calls: 319.8629856850716
threads: 1.0
time: 59.82237691726176

COL_F_PICARD_STEP_SOLVE
calls: 1664.230593607306
threads: 1.0
time: 42.258663883566214

COL_SETUP_LU_MATRIX
calls: 2025.7752293577983
threads: 1.0
time: 22.10206504471101

Kokkos::parallel_for [OpenMP] CSC solve
calls: 3341.6605504587155
threads: 1.0
time: 41.38449859489221

OpenMP Parallel Region: _ZN6Kokkos12parallel_forINS_11RangePolicyIJNS_6OpenMPEEEEZNK10Collisions9CSCMatrixINS_6DeviceINS_3HIPENS_8HIPSpaceEEEE11apply_solveENS_8DualViewIPPPPKdNS_11LayoutRightES9_vEENSB_IPPPPdSH_S9_vEEEUliE_vEEvRKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEERKT_RKT0_:0x26ffbed
calls: 3341.6605504587155
threads: 1.0
time: 41.35225960237385

OpenMP Work Loop: .omp_outlined..165:0x26c88dd
calls: 40458.8515625
threads: 14.0
time: 456.38939507615623

COL_F_SOLVER_CONVERT_BANDED
calls: 212462.70183486238
threads: 14.0
time: 34.09447231141055

COL_F_SOLVER_DGBSV
calls: 183531.99609375
threads: 14.0
time: 421.78630739814065Kokkos::parallel_for [HIP, Dev:0] E_and_D_ab

calls: 4186.585956416465
threads: 1.0
time: 9.59679005038741

Kokkos::parallel_for [HIP, Dev:0] E_and_D_s
calls: 4181.729468599034
threads: 1.0
time: 9.83193187463768

hipDeviceSynchronize
calls: 4191.456310679611
threads: 1.0
time: 9.549294743004854

hipDeviceSynchronize
calls: 4181.729468599034
threads: 1.0
time: 9.767604759014493

SHIFT
calls: 20.0
threads: 1.0
time: 86.86247758402344

SOLVE_FOR_FIELDS
calls: 10.0
threads: 1.0
time: 30.3204112861875

ipc1:PUSH
calls: 10.0
threads: 1.0
time: 41.933793961626954

ipc2:PUSH
calls: 10.0
threads: 1.0
time: 76.56395006044336

SHIFT_E
calls: 20.0
threads: 1.0
time: 66.36432500698047

SHIFT_I
calls: 20.0
threads: 1.0
time: 20.47785951591797

int MPI_Alltoall(const void *, int, MPI_Datatype, void *, int, MPI_Datatype, MPI_Comm)
calls: 20.0
threads: 1.0
total send bytes: 80.0
mean send bytes: 4.0
mode send bytes: 4.0
total recv bytes: 40960.0
mean recv bytes: 2048.0
mode recv bytes: 2048.0
bytes per call: 2052.0
time: 24.9524214777877

se:transpose_and_shift
calls: 20.0
threads: 1.0
time: 39.58544313339648

MPI Collective Sync
calls: 20.0
threads: 1.0
time: 24.900231611642145

se:MPI_shift_irecv_send
calls: 20.0
threads: 1.0
time: 39.37905628313672

int MPI_Send(const void *, int, MPI_Datatype, int, int, MPI_Comm)
calls: 754.033203125
threads: 1.0
total send bytes: 37014023447.65625
mean send bytes: 85480284.27191474
mode send bytes: 987580163.28125
bytes per call: 49088055.13372101
time: 31.165960004171875

int MPI_Wait(MPI_Request *, MPI_Status *)
calls: 927.0742049469965
threads: 1.0
time: 12.923564210643109

int MPI_Alltoall(const void *, int, MPI_Datatype, void *, int, MPI_Datatype, MPI_Comm)
calls: 20.0
threads: 1.0
total send bytes: 80.0
mean send bytes: 4.0
mode send bytes: 4.0
total recv bytes: 40960.0
mean recv bytes: 2048.0
mode recv bytes: 2048.0
bytes per call: 2052.0
time: 9.578129632581266

si:transpose_and_shift
calls: 20.0
threads: 1.0
time: 6.730121857692307

MPI Collective Sync
calls: 20.0
threads: 1.0
time: 9.57494957010951

si:MPI_shift_irecv_send
calls: 20.0
threads: 1.0
time: 6.716220355980519

int MPI_Send(const void *, int, MPI_Datatype, int, int, MPI_Comm)
calls: 355.22222222222223
threads: 1.0
total send bytes: 5471402108.571428
mean send bytes: 16011888.338234935
mode send bytes: 112169090.15873016
bytes per call: 15402758.516466329
time: 6.167633451396826

CHARGEI
calls: 10.0
threads: 1.0
time: 9.456303295132411

GET_POT_GRAD
calls: 10.0
threads: 1.0
time: 12.041091057085938

charge_irho0
calls: 10.0
threads: 1.0
time: 6.201025677538746

int MPI_Reduce(const void *, void *, int, MPI_Datatype, MPI_Op, int, MPI_Comm)
calls: 10.0
threads: 1.0
total send bytes: 159667360.0
mean send bytes: 15966736.0
mode send bytes: 15966736.0
total recv bytes: 302776623.4074074
mean recv bytes: 30277662.34074074
mode recv bytes: 30277662.34074074
bytes per call: 46244398.34074074
time: 6.193120991144444

MPI Collective Sync
calls: 10.0
threads: 1.0
time: 6.127969337283525

GET_POT_GRAD_EXCL_DESTR
calls: 10.0
threads: 1.0
time: 12.02954970380664

GET_POT_GRAD_PHI
calls: 10.0
threads: 1.0
time: 11.472724100466797

GET_POT_BCAST
calls: 10.0
threads: 1.0
time: 10.950597378195312

int MPI_Bcast(void *, int, MPI_Datatype, int, MPI_Comm)
calls: 120.0
threads: 1.0
total send bytes: 3832016640.0
mean send bytes: 31933472.0
mode send bytes: 31933472.0
bytes per call: 31933472.0
time: 10.931752785611328

MPI Collective Sync
calls: 120.0
threads: 1.0
time: 5.91650541578125

ipc1:PUSHE
calls: 10.0
threads: 1.0
time: 36.39851011639844

ipc1:PUSHI
calls: 10.0
threads: 1.0
time: 6.253321267681319

Kokkos::parallel_for [HIP, Dev:0] push_op
calls: 70.0
threads: 1.0
time: 28.173076800267577

hipDeviceSynchronize
calls: 70.0
threads: 1.0
time: 28.161251806521484

ipc2:PUSHE
calls: 10.0
threads: 1.0
time: 71.8082041660625

Kokkos::parallel_for [HIP, Dev:0] ptl_to_sorted_tmp_array_ph1_op
calls: 420.0
threads: 1.0
time: 7.88778825248975

Kokkos::parallel_for [HIP, Dev:0] push_op
calls: 140.0
threads: 1.0
time: 56.50838445808984

hipDeviceSynchronize
calls: 420.0
threads: 1.0
time: 7.885244830013668

hipDeviceSynchronize
calls: 140.0
threads: 1.0
time: 56.50529565709961

CHARGEI
calls: 10.0
threads: 1.0
time: 7.613691608554688

GET_POT_GRAD
calls: 10.0
threads: 1.0
time: 11.891952863771484

charge_irho0
calls: 10.0
threads: 1.0
time: 5.074206992

int MPI_Reduce(const void *, void *, int, MPI_Datatype, MPI_Op, int, MPI_Comm)
calls: 10.0
threads: 1.0
total send bytes: 159667360.0
mean send bytes: 15966736.0
mode send bytes: 15966736.0
bytes per call: 15966736.0
time: 5.060783165

GET_POT_GRAD_EXCL_DESTR
calls: 10.0
threads: 1.0
time: 11.88051959415039

GET_POT_GRAD_PHI
calls: 10.0
threads: 1.0
time: 11.316455254773437

GET_POT_BCAST
calls: 10.0
threads: 1.0
time: 10.777571592123047

int MPI_Bcast(void *, int, MPI_Datatype, int, MPI_Comm)
calls: 120.0
threads: 1.0
total send bytes: 3832016640.0
mean send bytes: 31933472.0
mode send bytes: 31933472.0
bytes per call: 31933472.0
time: 10.75880528394336

MPI Collective Sync
calls: 120.0
threads: 1.0
time: 5.790917739277778

LOAD_BAL_REBAL
calls: 10.0
threads: 1.0
time: 5.708702647184357

LOAD_BAL_REDIST
calls: 1.0
threads: 1.0
time: 5.556455517586885

SHIFT_R
calls: 1.0
threads: 1.0
time: 5.35270920922093

OpenMP Kokkos Kernels

HIP Kokkos Kernels



15

XGC: Push Kernel on Crusher/Frontier, Kokkos helped generate roofline

Increased computational intensity 
25x, reduced time by 22% by using 
Kokkos launch bounds of <256,2>

Cache V100 MI250X old MI250X new

L1 99.8% 87.6% 98.7%

L2 95.4% 58.8% 94.1%

Kokkos + APEX + PAPI + rocprofiler = J



16

Kokkos Lulesh and APEX Tracing – OpenMP, CUDA, HIP back ends

CUDA 

HIP 

OpenMP 



17

Kokkos Support in APEX

§ APEX implements the same profiling API that TAU does, and…
§ APEX provides autotuning (search) support
§ Kokkos provides the ability to autotune with:

-DKokkos_ENABLE_TUNING=ON
§ Automatically provides input and context variables for parallel_for, parallel_reduce, 

parallel_scan, parallel_copy.
– TeamPolicy: team size and vector length
– MDRangePolicy: tile sizes
– RangePolicy*: block size

*(in a long-dormant development fork/branch…would be nice to have because 
many kernels use RangePolicy)



18

APEX Autotuning of ExaMiniMD Neighbor2D::fill_neigh_list_full kernel

Exploring team sizes

Exploring vector lengths

Response (time)

Baseline 17.4972s

Tuning 17.7294s

Tuned 17.3790s

Is it worth it? …maybe?

Only one kernel is 
TeamPolicy in ExaMiniMD 
– all of the rest of the 
kernels are Range 
policies…



19

TAU or APEX?

§ Use TAU when:
– Advanced MPI or SHMEM measurements
– Sampling support
– HW/OS context (per-OS thread measurements)
– Broader HW support
– Python/ML/AI support
– TAU plugin support

§ Use APEX when:
– Support for asynchronous tasking
– Focus on algorithmic task dependency, not HW/OS
– Runtime autotuning / feedback & control support



20

Kokkos Wishlist

§ Autotuning:
– Support for Range policy
– Access to non-normalized input variables (all are mapped to [0.0 … 1.0])

• I think I know why this was done, but it’s confusing/misleading without a map

§ Default labels with source info J
– Or at least a function pointer



21

Acknowledgements

Parts of this research was supported by the Exascale Computing Project (17-SC-20-SC), a 
joint project of the U.S. Department of Energy’s Office of Science and National Nuclear 
Security Administration, responsible for delivering a capable exascale ecosystem, 
including software, applications, and hardware technology, to support the nation’s 
exascale computing imperative. 
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak 
Ridge National Laboratory, which is supported by the Office of Science of the U.S. 
Department of Energy under Contract No. DE-AC05-00OR22725.



22

Thanks! Questions?


