Scalable Performance Awareness for In Situ
Scientific Applications

Matthew Wolf*, Jong Choi*, Greg Eisenhauer?, Stéphane EthierY, Kevin Huck®, Scott Klasky*ﬁ,
Jeremy Logan*, Allen Malony®, Chad Wood®, Julien Dominski¥, and Gabriele Merlol
*Oak Ridge National Laboratory, Oak Ridge, TN, USA
School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
YPrinceton Plasma Physics Laboratory, Princeton, NJ, USA
tThe University of Tennessee, Knoxville TN, USA
§University of Oregon, Eugene, OR, USA
||University of Texas, Austin, TX, USA

Abstract—Part of the promise of exascale computing and the
next generation of scientific simulation codes is the ability to
bring together time and spatial scales that have traditionally
been treated separately. This enables creating complex coupled
simulations and in situ analysis pipelines, encompassing such
things as “whole device” fusion models or the simulation of
cities from sewers to rooftops. Unfortunately, the HPC analysis
tools that have been built up over the preceding decades are
ill suited to the debugging and performance analysis of such
computational ensembles. In this paper, we present a new vision
for performance measurement and understanding of HPC codes,
Monitoring Analytics (MONA). MONA is designed to be a
flexible, high performance monitoring infrastructure that can
perform monitoring analysis in place or in transit by embedding
analytics and characterization directly into the data stream,
without relying upon delivering all monitoring information to a
central database for post-processing. It addresses the trade-offs
between the prohibitively expensive capture of all performance
characteristics and not capturing enough to detect the features
of interest. We demonstrate several uses of MONA; capturing
and indexing multi-executable performance profiles to enable
later processing, extraction of performance primitives to enable
the generation of customizable benchmarks and performance
skeletons, and extracting communication and application be-
haviors to enable better control and placement for the current
and future runs of the science ensemble. Relevant performance
information based on a system for MONA built from ADIOS and
SOSflow technologies is provided for DOE science applications
and leadership machines.

I. INTRODUCTION

As we look towards the future of high performance com-
puting, it is becoming evident that the changes are going to be
more than just novel hardware and programming languages.
Part of the promise of exascale computing and the new
generation of scientific simulation codes is the ability to
bring together time and spatial scales that have traditionally
been treated separately — the design of materials from the
atomic level out to the helicopter rotor, the simulation of cities
from the flow of air pollution to the flexing of buildings, or
understanding a whole magnetic confinement fusion device
experiment from the ions at the core of the plasma to the
magnetic fields and casing materials at the edge. These am-

bitious projects put new constraints on the tools, middleware,
runtimes, and even the software engineering of these codes.

In particular, we have seen a change from the construction
of single, monolithic codes to computational experiments
composed of multiple executables, run as ensembles, coupled
codes, or as pipelines of in situ computations. This means that
the tools that have been built up over the last decades for
performance understanding and management of large MPI-
based codes need to be extended to be able to deal with
the new complexity. As a simple example, many performance
analysis tools index based on the MPI rank ID, but in an
ensemble where there are many concurrently running MPI
domains, there is no enforced unique ID from the runtime.
Solving that is relatively straightforward by itself, but you
then add to it many additional constraints and concerns as
a result of dealing with the measurement of collections of
distinct runtimes and applications, and it becomes more than
what a simple patchwork of fixes can address.

To address this change in the construction of high perfor-
mance codes, we have sought to infuse some of the innovations
from the cloud/enterprise computing world into the high
performance computing (HPC) space. In data center scale
monitoring of modern virtualized environments, one cannot
afford to keep track of all of the details of everything running,
even if it were legally or contractually possible [1]. The size of
the monitoring data would be such that its collection would
interfere with the performance of the system [2]. So it has
become essential to build flexible monitoring systems that are
capable of doing analytics in situ, or in place [3], [4], without
requiring that all of the data be delivered back to a central
database before being processed.

Building upon our previous experience with such distributed

Notice: This manuscript has been authored by UT-Battelle, LLC, under
contract DE-AC05-000R22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains a nonex-
clusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

enterprise monitoring as well as the rich experience with
performance measurement and understanding of HPC codes,
we have developed an approach for HPC Monitoring Analytics
(MONA for short) that allows one to address the detailed
performance questions that come from the high performance
community for these new sorts of runtime environments.
Specifically, MONA has been targeting the composition of in
situ analysis workflows and coupled codes through the Adapt-
able I/O System (ADIOS) [5]. ADIOS allows scientific end
users to leverage an API that is familiar for regular disk I/O,
looking much like C or Fortran binary I/O routines. However,
the careful design of the interface also means that the same
read and write operations will function as memory-to-memory
messaging receives and sends. From a software engineering
perspective, this allows separately developed executables to
be debugged and tested in combination using stored files
for testing, but then it is a matter of changing one line in
a configuration file to switch to in-memory coupling of the
codes [6].

There are several available memory-to-memory connection
providers within ADIOS, such as DataSpaces [7], FlexPath [8],
ICEE [9], and other research variants. They each are tuned
for different types of connection scenarios. We focus in
this work on peer-to-peer connections between producers
and consumers, an implementation of which is offered in
ADIOS through FlexPath. FlexPath uses the EVPath [10] event
messaging constructor library as its control and data plane,
and its control plane is extensible to deal with a variety of
elastic provisioning roles for in situ workflow performance
management [11]. Although the work presented here focuses
on the 1.x series of ADIOS, on-going work applies these
techniques and insights to the ADIOS 2.x framework [12] as
well.

ADIOS has been incorporated into a number of science
codes, ranging from target exascale computing applications
like the Fusion Whole Device Modeling, to commercial-driven
codes like ExaFOAM, to experimental data harnesses like
CASA for radio astronomy. The Fusion example is particularly
indicative of the complexity of modern codes, as that involves
supporting the coupling of two distinct applications, one that
simulates the core of the plasma and the other that simulates
the edge. Around all of these science scenarios are a host
of analysis codes, temporal and spatial reduction algorithms,
and diagnostic indicators that ADIOS also must support. The
complexity and importance of these use cases help drive our
usage scenarios for online capture and analysis of monitoring
data.

This online monitoring analytics approach has a range of
uses in practice. It offers the opportunity to build robust and
dynamically managed systems that can extract peak perfor-
mance from the available hardware, but that is never where
a realistic science scenario starts. Instead, getting consistent,
higher-quality feedback on the performance of in situ compo-
nents is critical for a host of pragmatic planning, debugging,
allocation, and code tuning operations. So the first goals of
MONA are firmly rooted in improving the software engineer-

ing practices and platform tools for the computational scien-
tists and engineers. Generating synthetic, time-synchronized
traces so that the multi-executable workflows can be analyzed
with traditional tracing tools is a simple threshold which can
nonetheless offer significant benefit to the community. As we
shall see, more advanced scenarios support features like using
this run’s performance model to inform the scheduler how best
to partition the available nodes next execution.

More generally, the MONA approach opens up an open
environment for innovation and development of new compu-
tational science use models. For example, one might leverage
near-real-time detection of anomalous behavior in the code
execution as a proxy for finding anomalous behavior or state
changes in the simulation data — new simulation state means
following different code paths, which can have measurable
perturbations on performance data. It is also a key component
in enabling a more interactive view of a running system;
“dashboard” interactive summaries of a running code have
been requested features implemented in ad hoc or bespoke
ways before [6], but adopting shared monitoring analytics
frameworks enables a richer set of reusable performance
understanding tools.

The rest of this paper is constructed to demonstrate the
progressive power of adopting these reusable monitoring ana-
Iytics tools for current and future science applications. In §II,
some of the key driving concerns arising from the science use
cases are examined, which then enables us to articulate the
core architectural concerns for the MONA approach which
are described in turn in §III. Section IV then showcases a
set of examples that use the MONA approach to inform
the software engineering process for the coupled multi-scale,
multi-physics, and in situ analytics workflows of advanced
science applications. From the science drivers through these
practical examples, we demonstrate the need for advancing the
state of the art in performance monitoring and how the MONA
approach can be used to create more robust computational
science environments.

II. SCIENCE DRIVERS

To help ground this general discussion, we present in more
detail two examples of research workflows from fusion energy
science. Both of these examples draw from the challenges
of understanding how to use magnetic confinement of hot
plasma to generate clean fusion energy in a type of device
called a Tokamak. Successful development of a production
Tokamak would have significant impact on energy production
worldwide, but the cost and timelines associated with physical
experiments mean that there is a substantial interest in extract-
ing the most possible science out of simulated scenarios so as
to focus the experimental endeavors.

The first use case demonstrates the replacement of a classic
and expensive post-hoc analysis with an in situ workflow that
carries out the analysis concurrent with the main simulation.
The Gyrokinetic Tokamak Simulation code (GTS) is a 3D
particle-in-cell code used for studying micro-turbulence in
the core of magnetic confinement fusion devices [13]. The

micro-turbulence features are both important for engineering
and fundamental physics reasons since they impact energy
confinement, so adequately characterizing and understanding
them is important. In this particular case, the analysis consists
of a spectral decomposition of the micro-turbulence field
across the whole volume and across time. This requires the
calculation of a Fourier transforms on a domain decomposed
dataset of 300,000 to 100 million grid points at regular
intervals during the simulation (every 10 time steps of a
20,000-step calculation). To store such a volume of data for
post-hoc analysis would be prohibitive, and so scientists that
are using post-hoc approaches tend to use coarser (either
in spatial or temporal dimensions) data sets. Moving the
workflow to online analysis allows access to a much finer-grain
data resolution, but it then makes it much harder to adequately
understand the requirements and provisioning needs of the
total in situ workflow. Monitoring of the individual executables
and the analytics over the fused dataset enable better planning,
provisioning, and debugging of the software as a whole.

Moving on from this simulation+analysis template for in
situ workflows, our second example is taken from the US DOE
Exascale Computing Project (ECP). The fusion Whole Device
Modeling application (WDMApp) [14] being developed as
part of ECP aims at coupling the most successful first princi-
ples codes for the simulation and prediction of the multiscale
physics in magnetic confinement fusion experiments [15].
The core applications driving this model, the XGC [16] and
GENE [17] codes, are currently the most compute-intensive
parts of a WDM simulation. XGC uses a so-called “total-f’
particle-in-cell method [18] to resolve some of the complex
dynamics and structures that arise at the edges of the plasma.
This more data-intensive algorithm is needed in order to
capture all of the fine details and non scale-separable physics
in that region. GENE, on the other hand, implements the highly
efficient “J f” algorithm [19], which relies on scale separation
and is thus valid mostly in the core (center) of the plasma but
breaks down near the edge. Each coupled code has historically
been developed independently of each other for the study of
plasma physics at these different length and time scales (for
more information, see the overview in [6]).

The data exchange and representational conversion needs for
the coupling between these applications, as well as a suite of
in situ analytics and I/O reduction and optimization routines,
form a complex workflow that requires constant monitoring
and feedback to avoid unnecessary periods of processor idling
and load imbalance. For this two-in-one application, the cou-
pling needs to be done in a synchronous way to conform to
the chosen mathematical integration technique, which brings
about a challenge in terms of resources allocation and process
placement. In the complex environment of heterogeneous node
architectures (CPU+GPU, DRAM and non-volatile RAM, etc.)
operating on a shared high performance interconnect back-
bone, understanding why or where performance features arise
only adds more challenges to the performance monitoring and
management task.

Compute Nodes Aggregation

Node(s)

Application Application

E il aggregator

Application Application SOS analysis
e

N Reports

L

Fig. 1: The Scalable Observation System (SOS) monitoring
system in action. Applications are linked with TAU, which
contains an SOS plugin client that will aggregate TAU data to
the on-node SOS listeners and on to the remote aggregator(s).
Analysis can be run post-mortem or at runtime.

III. ARCHITECTURAL DESIGN

The constraints of the examples described in §II combine
with the goals of scalable, multi-application online monitoring
frameworks from §I to give some general architectural princi-
ples for the construction of MONA.

 Static decision support means being able to synchronize
the independent measurements from each of the compo-
nents, generate coherent data set with all of them, and
potentially reduce data to deal with extremes.

o Timeliness of data retrieval and handling are important
to keep overheads low.

o Dynamic control should subsample monitoring streams
to reduce data load decision analytics.

o Aggregation network architecture should be actively con-
trolled.

o Parallel data generation with multiple tiers for filtering,
reduction, and aggregation can lead to more robust mon-
itoring analytics.

o Design informs choices of implementation to allow ap-
plication specialization.

« Flexibility in monitoring infrastructure allows us to eval-
uate alternatives for several discrete use cases as detailed
below.

In order to monitor parallel applications in a scientific work-
flow, it makes sense to re-purpose existing HPC measurement
tools rather than engineer a new solution. There are several

robust, scalable performance measurement tools (TAU [20],
Scalasca [21], HPCToolkit [22], Vampir [23], and others), but
broadly speaking, they are all designed for post-mortem analy-
sis of single application executions. However, as was discussed
in previous sections, we need the ability to monitor, perform
analysis, and potentially take actions based on the result of
those analyses and steer multiple applications in a workflow.
An existing tool would need to be modified/enhanced be-
cause online analysis requires data aggregation with minimal
interference with synchronous application communication. In
addition, monitoring multiple applications requires additional
data annotation beyond just node/thread data organization.

To overcome these issues, we have designed a data aggrega-
tion service for HPC called the Scalable Observation System
for Scientific Workflows (SOS) [24]. SOS! is a framework for
aggregating performance data from distributed workflows in
support of in situ analysis and as a mechanism for feedback
and control. SOS is designed as an aggregation network con-
sisting of client data sources, intermediate data listeners (one
per allocation node), and one or more aggregation daemons
running on one or more additional allocation nodes (See
Figure 1). Client applications send data to the listener daemons
over a local socket, and the listeners are connected to the
aggregators over EVPath. The aggregators are launched on
additional hardware resources, within the allocation request
but outside the application computation nodes. All commu-
nication to SOS happens on the same hardware resources
as the applications, but without relying on or interfering
with the application’s use of MPI infrastructure (other than
initialization/finalization).

We selected TAU as the performance measurement system
primarily due to our familiarity with the tool, the ability to
selectively insert and remove measurement probes, and the
plugin infrastructure TAU offers to extend its functionality.
SOS is an example of a plugin integrated with TAU with the
ability to access TAU performance data from each application
process and aggregate the data as performance profiles or
partial/full event traces.

In a typical usage scenario, the SOS plugin is configured
to initialize the SOS client connection during TAU plugin
initialization. It is assumed that one or more SOS aggregation
daemons are already running on additional allocation nodes,
having been launched by the submission script. Because
the plugin initialization happens during the MPI_TInit ()
wrapper, we are guaranteed that all ranks are blocked, syn-
chronously waiting for the call to return. As a result, as long as
the SOS aggregator daemon(s) have been launched, the TAU
plugin and SOS client code can handle construction of the
aggregation network, including launching the listener daemon
on each application node.

Within each application process, the TAU/SOS plugin
spawns a new thread for the SOS listener, which can read
TAU performance profiles periodically by iterating over all
timers, threads, and metrics, including TAU counters. The SOS

IThe name SOSflow is used to refer to an implementation of SOS.

’g 215 r T T T 1.2
)]
3 —=— Variables =
7] 1 e}
o —e— Latency g
2 18| 3
2 0.8 &
3 g
g o) 06 8
2 03
%) el
5} =
— 0.4
> 0.2 E
=
= 7T
ﬁ 2] I | I | | 0

24 25 26 27 28 29 210 211 212

Number of MPI Ranks

Fig. 2: Average end-to-end latencies when aggregating data
over SOS. In this experiment, each MPI rank is publishing 10
variables per second, with 16 MPI ranks per Titan node. Each
application node hosts an SOS listener daemon that commu-
nicates with the SOS aggregator daemon on the aggregation
node.

client library then sends the data to the SOS listener over
TCP/IP sockets. Once the SOS listener has data, it aggregates
the performance data to one or more SOS aggregators over
EVPath[10]. The data is aggregated in SOS either in a file-
based database, an in-memory database, or (for faster runtime
analysis client access) a hash table of time-series data values.
The data is periodically aggregated asynchronously over the
SOS network in a tree-like fashion.

IV. CASE STUDIES IN IN SITU MONITORING ANALYTICS

We present here a set of increasingly complex case studies
of how online monitoring analytics can be applied to further
the goals of increasing science performance and software
efficiency in the complex HPC environments. We test these
cases on machines from the Department of Energy’s Compu-
tational Facilities, including Titan [25] at Oak Ridge National
Laboratory, former #1 on the Top500 list, Cori [26] at NERSC,
and Theta [27] at Argonne National Laboratory.

A. In Situ Workflow Performance Monitoring

One initial goal for online monitoring analytics as a user is
to gain scalable access to monitoring data. Using monitoring
analytics to aggregate and summarize an in situ workflow
execution can make it much more understandable later. In
order to determine the data ingestion capabilities of SOS on
Titan, we performed a scaling study in which a constant rate of
data was aggregated per application rank. As there are 16 cores
per Titan node, the baseline case was a test MPI application
with 16 ranks running on 1 node, and an SOS listener running
on the same node. The test application will pack and publish
a configurable amount of data during each iteration (organized
by SOS as one frame of data), and then pause for a specified
amount of time, up to IV iterations.

TABLE I: Measurement overheads when executing GTS with 96 MPI ranks on Titan. “The tracing latency includes an average
1 second delay between pack and publish times for traced events. The send and process latency was only 0.74s.

Config | Time(s) | Overhead | Timers | SOS Vars | SOS Values | Avg Latency
GTS 280.91 n/a n/a n/a n/a n/a
GTS+TAU 283.58 0.95% n/a n/a n/a n/a
GTS+TAU+SOS Profile 310.75 10.62% 58 45,643 748,537 0.73s
GTS+TAU+SOS Trace 316.59 12.70% 58 70,850 4,346, 883 1.73s*

In our test case, we packed 10 name/value pairs of doubles
per iteration from each application rank for 100 iterations.
We doubled the number of allocated nodes, up to 256 nodes,
or 4096 total MPI ranks. We define latency as the total time
between when the SOS client library packed the variable until
it was received by the aggregator. Figure 2 shows that up to
3584 application ranks (35, 840 total variables per second), the
aggregator can handle the stream. At 4096 ranks, the end-to-
end latency is greater than the periodicity of the data gener-
ation rate, and the aggregator will eventually fail. Therefore,
in deployments where more variables per second and/or more
ranks are needed, additional aggregators can be deployed and
can be queried concurrently for runtime analysis. It should be
noted that the aggregators are also completely optional - for
high data volume test cases, a “listener-only” configuration of
SOS is possible, and the listeners can be queried by analysis
resources concurrently. Listeners and aggregators are the same
executable with the same capabilities, and only differ in how
they are deployed.

We also performed some overhead measurements to de-
termine how much of an effect there is in running an SOS
listener daemon on the same resources where the computation
is taking place. In this example, we ran the GTS application
as configured for Section I'V-B, executed using 96 MPI ranks
placed on 6 nodes. Table I shows the comparison between
running 1) GTS without TAU measurement, 2) GTS with
TAU linked in to profile MPI and ADIOS calls, 3) GTS
with TAU and SOS where TAU is aggregating profile data
every 15 seconds, and 4) GTS with TAU and SOS “tracing”,
where TAU is packing every MPI collective and ADIOS timer
as they complete, and publishing every 2 seconds. While
10 — 13% is a relatively high amount, it should be noted that
the compute nodes are oversubscribed in scenarios 3) and 4),
because the SOS listeners running on each computation node
are sharing resources with the application. No additional cores
are reserved for the local processing of SOS data, which could
be done in other configurations or with other applications
by modifying aprun arguments. In addition, for scenario
3) the current implementation of the SOS plugin requires
TAU to block the application while iterating the internal data
structures. We are already working on an optimization that
would eliminate that requirement, allowing true asynchronous
behavior. Finally, scenario 4) represents a true stress-test
for the infrastructure, providing a fully aggregated trace at
runtime. For that reason we conclude that 12.7% overhead is
reasonable for that added functionality.

B. Using monitoring data to generate skeletal workflows

To understand workflow performance, it is helpful to be able
to capture aspects of the dynamic behavior of complex science
workflows. Performance engineering and correctness testing
of these codes is difficult, so it is useful to create surrogates
through automated generation of benchmark codes that allow
us to reproduce various aspects of this dynamic behavior. We
use program trace information to populate a model of the
communication and I/O behavior of each process. This is an
extension of our previous work with the Skel tool [28], [29],
and it provides a more complete view of program behavior by
incorporating inter-process communication (MPI) and better
representing total runtime rather than focusing solely on time
to complete I/O calls.

The execution model is extracted as follows. We first
identify events of interest, such as MPI_Comm events, MPI
collectives, and I/O events, that we will represent in the
model. Next, we observe that our program has three distinct
phases: an initialization phase, a series of compute phases [30]
interspersed with I/O, and a finalization phase. Consequently,
we divide the trace events into these parts using SOS. For
the initialization and finalization phases, we extract desired
events from the trace. We then identify non-negligible gaps
between such events, and insert “computation” events that
track the time of those gaps. We follow the same procedure
for the compute phases, however, instead of capturing every
compute phase in its entirety, we select a representative phase

Source Workflow

GTS = FFT

Skeletal Workflow

FFT’

Fig. 3: Extracting a Pookie model using SOS

Comparison of GTS and GTS-pooklet times

Time (seconds)
0 5000 10000 15000 20000 25000 30000

| 25130

Total Runtime 28573

MPI_Allreduce() IR 3567

24146

MPI_Waitall() 0_ 2624

MPI_Sendrecv() 0— 2405

MPI function

MPI_Init() I 210
214

Ml Reduce I 418
_Reduce flL4

MPI_Bcast ‘1105

W GTS M GTS-pooklet

Fig. 4: Comparison of GTS and GTS-Pooklet traces for a 96-
process run on Titan showing total time on all processes for
selected MPI functions.

to capture, and keep track of the total number of phases.

To leverage such an execution model, we have constructed
Pookie, a generative tool for producing a benchmark code
that exhibits the behavior described by the model. Like Skel,
Pookie leverages a code template that can be instantiated by
an execution model to produce desired codes. The template
can be modified by the user, allowing the user flexibility in
leveraging model elements that represent desired aspects of a
program. However, the results presented in this section focus
only on the single model described above.

The use of SOS, the Model Extractor, and Pookie to
skeletonize a complete workflow is illustrated in Figure 3.
First, SOS is used to capture trace events for MPI com-
munications and ADIOS I/O operations. Next, an extraction
script queries SOS to acquire a unified view of communication
and I/O across a collection of processes that make up an
application, as well as cooperating analysis and visualization
components, producing a set of application models that repre-
sent a complete workflow. Finally, Pookie uses the extracted
application models to create a skeletal workflow that mimics
the communication and I/O behavior of the original workflow.

To demonstrate the behavior of these tools, we first per-
formed a 96-core run of the GTS application (discussed in
Section II) on Titan. Next we used SOS to capture trace events,
and used the Model Extractor to create a model of that run.
Providing the model as input to Pookie, we produced a skeletal
code, or “pooklet”. Finally we ran the GTS-pooklet on Titan
and compared the resulting traces.

Figure 4 shows a performance comparison between the
original GTS run, and the GTS-pooklet run. There are several
things to note about this comparison. First, the pooklet does
a good job of representing the overall performance of the
GTS run. It succeeds in showing that the MPI_Allreduce
function accounts for the majority of the time of the run. Next,
we see that MPTI_Waitall and MPI_Sendrecv functions
account for a not insignificant portion of the GTS runtime, but

are not reflected in the pooklet trace due to our decision to omit
point-to-point calls and focus on collective communications.
Finally, looking at some of the smaller contributors to runtime,
such as MPI_Reduce and MPI_Bcast, we see that the mea-
surements differ by as much as two orders of magnitude. The
reason is that our model captures only a single timestep, rather
than a more comprehensive representation of all timesteps, so
that the variability from step to step is not accurately modeled.

These last two points reflect the significance of the model
schema in this process by highlighting that the choice of
model dictates the degree to which the generated codes will
reflect particular aspects of the behavior of the represented
application. Creating application skeletons is not a one-size-
fits-all endeavor, but rather the characteristics of a useful
model will depend on the particular behavior that a user is
attempting to capture. For instance, if it were important for
our pooklet to be better at representing the step-by-step vari-
ability of the application, we might instead use the following
approach. Rather than choosing to capture computation times
from a single representative step, we could incorporate data
from many steps into a statistical model. We could then use
the model to randomly generate computation times that don’t
match the source trace, but instead attempt to mimic the
overall distribution of times. This would leave the model less
susceptible to inaccuracy caused by relying on a single time
step, and better reflect some types of performance variability.

C. Performance monitoring for variability study

Performance variability or jitter caused by the concurrent
use of shared resources with multiple users, such as network
interconnect and I/O system, is an increasingly important issue
as HPC systems grow larger and serve greater numbers of
concurrent users. In particular, for long-running simulations
that are part of complex workflows, detection of performance
variability caused by external or internal resource contention
becomes critical. Presence of such variability needs to be
monitored and handled in a timely manner before delays
propagate to other dependent tasks. However, it is currently
quite challenging for users to monitor application performance,
to check the current “weather” of the system, and to develop
a code to respond to jitter events when they occur. To tackle
such a challenge, we have explored using MONA to expedite
the process of monitoring and consuming on-line monitoring
data. We note that the term OS jitter [31] is commonly used to
describe a particular class of variability, however, here we are
describing a more general set of phenomena (which includes
OS jitter) for which we do not attempt to assign a cause to
the observed jitter.

In this section, we demonstrate the use of MONA to observe
performance variability on various DOE facilities. First, we
try to observe the existence of performance variability by
using our motivating application, XGC, which was introduced
in Section II. To this end, we ran multiple instances of
the XGC application using identical input and compared the
observed performance difference between runs. To ensure a
fair comparison, we configured the application to be deter-

ministic rather than stochastic to eliminate internal variability.
In addition, to minimize a common source of variability, we
set the application to utilize the parallel filesystem as little
as possible, as shared filesystems are known to be a common
source of variability, caused by the unpredictability of other
users accessing concurrently.

In this experiment, we chose a coupling application devel-
oped for fusion energy science, called XGC-F},.,; coupling,
which is used to run a fusion simulation (XGC), and its particle
distribution analysis application (F},¢,;) concurrently. Both are
parallel codes written using MPI. We ran the same code with
the same input at multiple times over the course of a few
weeks on different DOE HPC machines: Theta at ANL and
Titan at ORNL.

Fig 5 shows a few representative runs for each machine.
We observed the performance variability in the XGC-Fyyiq;
coupling over these runs. As the XGC-F},t,; Tun progressing
with steps (represented in the x-axis), the trajectory of time
per step (represented in the y-axis) varies run by run.

Identifying the sources of the variability is beyond the scope
of this paper. However, we believe the main source is the use of
the shared interconnect network, which is shared with multiple
concurrent users. Different placement of processes between
jobs and different neighboring applications also contribute to
such variability. SOS enables us to monitor and collect such
information necessary for further performance improvement.

Second, we demonstrate how we analyze captured moni-
toring data from SOS by using autocorrelation analysis [32].
Autocorrelation is an analysis method developed for time-
series data to find repeating patterns or periodicity. For a
given time-series data, autocorrelation is to find the degree of
similarity, or correlation, within the same input after varying
delays (or lags). With mathematical notation, we can define
autocorrelation as follows. For a time-series data x represented
by a vector (z1, T2, ..., x5) of N observations, autocorrelation
of with k delays, 7, is defined by

N—k
i (@i =) @ik —)
T = N

Yim1 (@i — p)?

(D

where p is a mean value of z;’s.

In Fig 6, we show an example of a performance trace
collected from a single XGC-Fj,tq run (top) and its cor-
responding autocorrelation analysis result (bottom). In the
autocorrelation analysis, the observed performance maintains
a strong correlation (0.7-1.0) up to about the first 25 lags
(timesteps) and drops to near zero at around 160 lags. Cor-
relations below the 95% confidence interval (dotted line) are
considered to be random behavior. We can also observe week
periodic correlations, which appear as bumps in the plot, and
which can be used to identify periodic patterns of performance.
This analysis implies we can analyze the monitoring data
from SOS to identify the performance variability patterns for
developing on-line performance tuning.

Titan

5501 ﬂw;/ﬁwudeﬂﬂwazwmfwwﬂwhﬂ¢~

o]

£ 5.25

Qo

9 5.00

%))

g 4.75 —— 2019-03-14 19:14

Y 450 2019-04-08 10:50

E .

[—— 2019-xx-xx mm:mm
4.25 —— 2019-04-10 16:23
4.001—= : :]]]]

0 200 400 600 800 1000 1200
Timestep
Theta

__12.01

(9]

()

o2

o 11.51

Q

i

@ 11.01

o

© —— 2019-04-12 14:08

£ 10.51 :

£ 10. 2019-04-25 02:54

—— 2019-04-25 13:09
10.01— , ; !]
0 200 400 600 800
Timestep

Fig. 5: Performance variability of XGC-F},;,; measured on
Titan at ORNL and Theta at ANL at different times. The
performance of fusion coupling workflows shows variability.
We used the following ratios of MPI processes between XGC
and Fjopqr: 8,192 to 256 on 528 Titan nodes, as well as and
2,048 to 256 on 132 Theta nodes.

2019-04-11 03:02

0 4.9
o
[0}
£ 4.8
'—
0 100 200 300 400 500 600
Timestep
06 1.01 —— correlation
58 --- 95% confidence
5205
0n o
26
© O'O T T T T T T T
0 100 200 300 400 500 600
Lags

Fig. 6: Example of variability analysis of XGC-Fj,q;. The
performance monitoring data from MONA (top) and its result
with autocorrelation (bottom) are demonstrated. We measured
by using 8,192 XGC to 256 Fj,a; MPI processes over 528
Titan nodes.

D. Communication pattern monitoring for task placement

Understanding the impact of communication patterns in a
parallel application is essential for identifying bottlenecks,
avoiding workload imbalance, deciding task placement, etc.
However, the increasing scale and complexity of parallel
applications running on HPC machines due to factors such
as coupled executions, in situ analysis, and node heterogeneity
makes it increasingly challenging for a user to comprehend the
communication patterns displayed by non-trivial workflows.
Using our MONA tools for preparatory model extraction is
ideal for assisting with this challenge. In this section, we
discuss how information from SOS can be used to improve
the performance of a complex coupling workflow by offering a
mechanism to optimize task placement in HPC environments.

The task placement problem, which seeks a mapping be-
tween parallel processes and distributed nodes to optimize
the performance of the parallel application by minimizing
communication congestion and interference, has been long
studied in the area of HPC research and workflow systems.
While initial studies have been constructed based on static
information about an application’s communication pattern,
our previous work [33], named Task Graph Embedding or
TGE, focuses on optimizing placement based on dynamic
system information as well as inter- and intra-communication
patterns within and between multiple concurrent applications.
However, timely access to monitoring data has been an issue
for users. A major goal of designing monitoring infrastructure
is to allow users to assemble such information at runtime
without excess impact on application performance.

Fig 7 shows how we leverage the MONA tools to obtain the
communication pattern data that allows TGE to find an optimal
process placement for our motivational application, called
XGC and GENE coupling (discussed in Section II). Both XGC
and GENE are independent, parallel fusion simulation codes
focusing on different plasma physics happening on a specific
spatial region (the edge area and the core area respectively),
in a fusion reactor. When we are running them as a coupled
workflow, they actively exchange a set of boundary condition
data shared by the two codes, which creates a complex data
flow pattern due to their inter- and intra-communications. Task
placement for XGC-GENE coupling is more challenging due
to these complex data flows.

In our experiment, we build both XGC and GENE code
with SOS so that we can extract two types of information;
1) communication patterns of XGC, GENE, and XGC-GENE
interactions and ii) topology information of allocated re-
sources, such as node layout, connectivity graph, and pairwise
node distances. Based on that information as input, TGE
then calculates optimal process placement by using a graph-
theoretic embedding algorithm [33].

Figure 8 shows a comparison of XGC-GENE coupling with
and without TGE and SOS on Titan. The boxplot in the
figure draws the summary statistics of multiple runs using a
fixed number of nodes (1024) but using different allocation
diameters. The diameter, defined by the longest hop-distance

! Coupled Execution
| XGC |«—| GENE
i SOSflow

Communication Pattern
Extraction

System Topology
Extraction

XGC

GENE
Task Graph Embedding (TGE)

v

New Process Placement Strategy

Fig. 7: Using TGE with SOS for XGC-GENE coupling.

between any two nodes, illustrates the compactness (or sparse-
ness) of an allocation. On Titan, like most other HPC systems,
each job is assigned to use a dynamically allocated set of
nodes. The particular set of nodes that are assigned depends on
availability, and largely determines the connectivity between
nodes. Within the set of assigned nodes, we are able to allocate
tasks in any order we would like. TGE attempts to tell us
how to assign tasks to the nodes such as to obtain optimal
performance. The results shown in Figure 8 demonstrate both
performance improvement and reduced variability when using
TGE over various ranges of allocation diameters, as compared
with the default placement method (no SOSflow and canonical
process ordering).

The astute reader will note that we generally observe better
performance as the allocation diameter increases, which is a
surprising result. Our rule of thumb has been that communi-
cation performance is higher with compact allocation since
there is less chance for external interference and generally
fewer network hops are required. Regardless of the details of
this specific example, we think this demonstrates exactly why
we need runtime monitoring, as performance often presents in
non-intuitive ways. Identifying and reasoning about the cause
of poor performance is key for optimizing in situ workflows. In
these particular experiments, we believe this counter-intuitive
trend was caused by internal interference in XGC-GENE
coupling, combined with the fact that no consistent external
noise was encountered during the experiments, but further
testing would be necessary to determine root cause. Tools
like MONA will become increasingly critical as more complex
workflows are introduced.

V. RELATED WORK

The literature on performance measurement, modeling, and
tuning is long and complex, even within the restricted space
of high performance computing. A comprehensive survey of
the space would be welcome, but we restrict ourselves here

Method
Il No SOSflow

Time (s)

Saé'}%{-

I TGE with SOSflow
T T

% -E-
1" 18

AIIocatlon D|ameter

Fig. 8: XGC-GENE performance enhancement with SOS on
Titan when placing processes onto 1024 node allocations.

to a selection of key connection points. There are a number
of comprehensive distributed monitoring systems that enable
capturing multifaceted monitoring data such as Ganglia [34],
Nagios [35], Munin [36], Host sFlow [37], Heka [38] and
Hindsight. Most of these, though, are more focused on re-
source utilization and hardware status for machine operator
needs. Ganglia scales well and it targets monitoring of fed-
erations of HPC clusters. It uses XML to represent data,
XDR as a data transport and RRDtool (Round Robin Database
Tool) [39] to store and visualize data. Nagios offers a compre-
hensive monitoring solution for IT infrastructure allowing for
monitoring applications, services, operating systems, network
protocols, system metrics, etc [35]. It can be tailored to the
user’s needs with a rich selection of plugins. Munin [36]
aims at providing aid in diagnosing performance issues. Munin
emphasizes plug-and-play capabilities, easy of developing new
plugins tailored to the user’s specific needs. It focuses on
monitoring resource performance, and, similar to Ganglia, it
exploits RRDtool. The Host sFlow [37] aims at providing an
open source monitoring solution to capture various server-
related performance metrics. sFlow specifies the format of the
exported data, and if a particular device is a sFlow capable
device, the software can collect data from such a device.
Among others, Ganglia, ntop, and Wireshark are capable
of handling sFlow data. Mozilla Hindsight[40] is a higher-
performance successor to the Heka [38] distributed monitoring
analysis framework that consists of a C-based transport system
with Lua plugins for data processing.

Another approach to online distributed monitoring and
aggregation of information is provided by the DIMVHCM [41]
model. Its principal service goals are around performance un-
derstanding through visualization tools rather than the holistic
workflow applications and runtime environment. As a result,
DIMVHCM provides only limited support for in situ query of
information.

The Lightweight Distributed Metric Service (LDMS) [42]
captures system data continuously to obtain insight into be-
havioral characteristics of individual applications with respect

to their resource utilization. However, LDMS can not be
configured with and used directly by an application. Addi-
tionally, it does not allow for richly-annotated information
to be placed into the system from multiple concurrent data
sources per node. As data aggregation infrastructure, SOS has
many things in common with the Multicast Reduction Network
(MRNet) [43]. MRNet utilizes a fully actualized Tree Based
Overlay Network to aggregate data to a single top-level node.
Because of its dependency on MPI to perform discovery and
configuration of the network [44], it cannot easily be used
in workflow scenarios with multiple distinct MPI application
contexts. Similarly, some of the cloud/enterprise-scale moni-
toring examples mentioned in the introduction [2], [3] have
interesting overlaps in motivation and technique.

The field of provenance capture has also yielded works that
overlap with the real-time analytics space. Komadu [45] is
a system to capture, analyze, and reduce streams of prove-
nance data that includes both performance and procedural
information, with a target towards Data Lake and similar
map-reduce processing environments. Other similar work that
mixes provenance with performance information is used in
commercial offerings for tuning web application performance
with tools like Amazon CloudWatch and Lambda [4].

At the far end of real-time application of MONA-type
functionality are systems that monitor and adapt application
behavior with changing circumstances, such as Goldrush[46]
and Landrush [47]. Both systems use fine-grained monitoring
and scheduling to ”steal” idle resources in ways that minimize
interference between the simulation and in situ analytics, with
Goldrush focusing on harvesting CPU cycles, while Landrush
focuses on GPU cycles. Both, however, rely on bespoke
monitoring systems that tie directly to their specific platform
requirements, rather than general science-user programmabil-

ity.
VI. CONCLUSIONS & FUTURE DIRECTIONS

As new application scenarios continue to use online, in situ,
and code-coupled workflows in new ways, it is worthwhile to
evaluate and, as appropriate, borrow concepts for monitoring
analytics from different areas such as cloud computing. Here
we have explored the usefulness of runtime performance
monitoring and analytics (MONA) using several examples
from science use cases, where we leverage infrastructure built
with the Adaptable I/O System (ADIOS) and the Scalable
Observation System (SOS). In Section IV-A, we described a
scaling study investigating the performance impact of gather-
ing runtime performance information. Section IV-B examined
a benchmark generation tool that takes advantage of runtime
tracing and performance monitoring of in situ workflows.
The need to study and monitor performance variability was
explored in Section IV-C. Finally, in Section IV-D we dis-
cussed the use of our monitoring infrastructure to inform task
placement algorithms allowing the optimization of workflow
communications. Each of these distinct usages of MONA
capabilities could have been built as individual, bespoke sys-
tems. However, this progression demonstrates the need for new

common performance frameworks for scalable computational
science.

We foresee many opportunities to leverage an applica-
tion runtime monitoring and analysis infrastructure such as
MONA. There is an ongoing effort to increase performance
predictability and portability for in situ applications, and tools
like MONA will continue to be central to those efforts.
Availability of performance information at runtime will also
help to drive application code specialization and/or just-in-
time customization, where different implementation options
can be chosen based on measured performance on a particular
platform. Furthermore, the performance information can also
be used to inform future user-space management components
capable of dynamically configuring workflows based on the
observed performance and/or constraints of the software and
hardware.

Engineering of research software in the extreme scale
computing environment is difficult, and it requires new tools
as we move away from the traditions of monolithic code
construction. The MONA approach has demonstrated a path
towards creating more robust and usable performance toolkits
for science applications at the cutting edge.

ACKNOWLEDGMENT

We gratefully recognize the support from the Department of
Energy’s Office of Advanced Scientific Computing Research
(ASCR Research) for enabling this work. Additionally, this re-
search used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, the National
Energy Research Scientific Computing Center (NERSC), and
the Argonne Leadership Computing Facility which are sup-
ported by the Office of Science of the U.S. Department
of Energy under Contract Nos. DE-AC05-000R22725, DE-
AC02-05CH11231, and DE-AC02-06CH11357, respectively.

REFERENCES

[11 G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07. New York, NY, USA: ACM, 2007, pp. 205-220. [Online].
Available: http://doi.acm.org/10.1145/1294261.1294281

C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and M. Wolf,
“A flexible architecture integrating monitoring and analytics for
managing large-scale data centers,” in Proceedings of the 8th ACM
International Conference on Autonomic Computing, ser. ICAC ’11.
New York, NY, USA: ACM, 2011, pp. 141-150. [Online]. Available:
http://doi.acm.org/10.1145/1998582.1998605

C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Talwar,
M. Wolf, and C. Huneycutt, “VScope: Middleware for troubleshooting
time-sensitive data center applications,” in Middleware 2012
- ACM/IFIP/USENIX 13th International Middleware Conference,
Montreal, QC, Canada, December 3-7, 2012. Proceedings, ser. Lecture
Notes in Computer Science, P. Narasimhan and P. Triantafillou,
Eds., vol. 7662. Springer, 2012, pp. 121-141. [Online]. Available:
https://doi.org/10.1007/978-3-642-35170-9_7

J. Varia, S. Mathew et al., “Overview of Amazon Web Services,” Amazon

Web Services, pp. 1-22, 2014.
Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.

Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello ADIOS: the challenges and lessons of developing leadership
class I/O frameworks,” Concurrency and Computation: Practice and

[2]

[4]
[5]

10

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Experience, vol. 26, no. 7, pp. 1453-1473, may 2014. [Online].
Available: http://doi.wiley.com/10.1002/cpe.3125

J. Y. Choi, C.-S. Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta,
M. Ainsworth, B. Allen, F. Cappello, M. Churchill, P. E. Davis, S. Di,
G. Eisenhauer, S. Ethier, I. Foster, B. Geveci, H. Guo, K. A. Huck,
F. Jenko, M. Kim, J. Kress, S.-H. Ku, Q. Liu, J. Logan, A. Malony,
K. Mehta, K. Moreland, T. Munson, M. Parashar, T. Peterka, N. Pod-
horszki, D. Pugmire, O. Tugluk, R. Wang, B. Whitney, M. Wolf, and
C. Wood, “Coupling exascale multiphysics applications: Methods and
lessons learned,” 2018 IEEE 14th International Conference on e-Science
(e-Science), pp. 442-452, 2018.

C. Docan, M. Parashar, and S. Klasky, “DataSpaces: An interaction
and coordination framework for coupled simulation workflows,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 25-36. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851481

J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, “Flexpath: Type-based
publish/subscribe system for large-scale science analytics,” in [4th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014.
IEEE Computer Society, 2014, pp. 246-255. [Online]. Available:
https://doi.org/10.1109/CCGrid.2014.104

J. Y. Choi, K. Wu, J. C. Wu, A. Sim, Q. G. Liu, M. Wolf, C. Chang, and
S. Klasky, “ICEE: Wide-area in transit data processing framework for
near real-time scientific applications,” in Proceedings of BDAC 2013
: 3rd International Workshop on Big Data Analytics: Challenges and
Opportunities, 2013.

G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-based
systems: Opportunities and challenges at exascale,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, ser. DEBS "09. New York, NY, USA: ACM, 2009, pp. 2:1-
2:10. [Online]. Available: http://doi.acm.org/10.1145/1619258.1619261
J. Dayal, J. Lofstead, G. Eisenhauer, K. Schwan, M. Wolf, H. Abbasi,
and S. Klasky, “SODA: Science-driven orchestration of data analytics,”
in 2015 IEEE 11th International Conference on e-Science, Aug 2015,
pp. 475-484.

“ADIOS2 Github,” https://github.com/ornladios/ADIOS2, 2019.

W. Wang, Z. Lin, W. Tang, W. Lee, S. Ethier, J. Lewandowski,
G. Rewoldt, T. Hahm, and J. Manickam, “Gyro-kinetic simulation of
global turbulent transport properties in tokamak experiments,” Physics
of Plasmas, vol. 13, no. 6, p. 092505, 2006.

“ECP WDMApp,” https://www.exascaleproject.org/project/wdmapp-
high-fidelity-whole-device-modeling-magnetically-confined-fusion-
plasmas/, 2017.

J. Dominski, S. Ku, C.-S. Chang, J. Choi, E. Suchyta, S. Parker,
S. Klasky, and A. Bhattacharjee, “A tight-coupling scheme sharing
minimum information across a spatial interface between gyrokinetic
turbulence codes,” Physics of Plasmas, vol. 25, no. 7, p. 072308, 2018.
C. S. Chang, S. Ku, P. H. Diamond, Z. Lin, S. Parker, T. S. Hahm,
and N. Samatova, “Compressed ion temperature gradient turbulence in
diverted tokamak edge,” Physics of Plasmas, vol. 16, p. 05168, 2009.
M. K. F. Jenko, W. Dorland and B. N. Rogers, “Electron temperature
gradient driven turbulence,” Physics of Plasma, vol. 7, p. 1904, 2000.
S. Ku, R. Hager, C. S. Chang, J. M. Kwon, and S. E. Parker, “A
new hybrid lagrangian numerical scheme for gyrokinetic simulation of
tokamak edge plasma,” J. Comp. Phys., vol. 315, pp. 467-475, 2016.
S. E. Parker and W. W. Lee, “A fully nonlinear characteristic method for
gyrokinetic simulation,” Physics of Fluids B, vol. 5, no. 1, pp. 77-86,
1993.

S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
The International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287-311, 2006.

M. Geimer, F. Wolf, B. J. Wylie, E. Abrahém, D. Becker, and B. Mohr,
“The Scalasca performance toolset architecture,” Concurrency and Com-
putation: Practice and Experience, vol. 22, no. 6, pp. 702-719, 2010.
L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685-701, 2010.

A. Kniipfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Miiller, and W. E. Nagel, “The Vampir performance analysis tool-
set,” in Tools for High Performance Computing. Springer, 2008, pp.
139-155.

[24]

[25]

[26]

[27]
[28]

[29]

(30]

[31]

(32]

[33]

[34]
[35]
[36]

C. Wood, S. Sane, D. Ellsworth, A. Gimenez, K. Huck, T. Gamblin, and
A. Malony, “A scalable observation system for introspection and in situ
analytics,” in 2016 5th Workshop on Extreme-Scale Programming Tools
(ESPT), Nov 2016, pp. 42-49.

“Titan,” https://www.olcf.ornl.gov/olcf-resources/compute-
systems/titan/, accessed: 2019-08-02.

“Cori,” https://www.nersc.gov/users/computational-systems/cori/,
cessed: 2019-08-02.

“Theta,” https://www.alcf.anl.gov/theta, accessed: 2019-08-02.

J. Logan, S. Klasky, J. Lofstead, H. Abbasi, S. Ethier, R. Grout, S. Ku,
Q. Liu, X. Ma, M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf,
“Skel: Generative software for producing skeletal I/O applications,” in
2011 IEEE Seventh International Conference on e-Science Workshops,
Dec 2011, pp. 191-198.

J. Logan, J. Y. Choi, M. Wolf, G. Ostrouchov, L. Wan, N. Podhorszki,
W. Godoy, S. Klasky, E. Lohrmann, G. Eisenhauer, C. Wood, and
K. Huck, “Extending Skel to support the development and optimization
of next generation I/O systems,” in 2017 IEEE International Conference
on Cluster Computing (CLUSTER), Sept 2017, pp. 563-571.

Y. Jin, X. Ma, M. Liu, Q. Liu, J. Logan, N. Podhorszki, J. Y. Choi,
and S. Klasky, “Combining phase identification and statistic modeling
for automated parallel benchmark generation,” in Proceedings of the
2015 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, ser. SIGMETRICS ’15. New
York, NY, USA: ACM, 2015, pp. 309-320. [Online]. Available:
http://doi.acm.org/10.1145/2745844.2745876

K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing application
sensitivity to os interference using kernel-level noise injection,” in SC
’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomput-
ing, Nov 2008, pp. 1-12.

G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

J. Y. Choi, J. Logan, M. Wolf, G. Ostrouchov, T. Kurc, Q. Liu, N. Pod-
horszki, S. Klasky, M. Romanus, Q. Sun, M. Parashar, R. M. Churchill,
and C. Chang, “TGE: Machine learning based task graph embedding for
large-scale topology mapping,” in 2017 IEEE International Conference
on Cluster Computing (CLUSTER), Sept 2017, pp. 587-591.

“Ganglia site,” http://ganglia.info/, 2019.

“Nagios site,” http://www.nagios.org/, 2013.

“Munin site,” http://munin-monitoring.org/, 2019.

ac-

11

(371
[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

“Host sFlow,” http://sflow.net, 2013.

“Heka—Data Acquisition and Collection
https://github.com/mozilla-services/heka, 2013.
“RRDtool-logging and graphing,” http://oss.oetiker.ch/rrdtool/, 2013.
“Hindsight,” https://github.com/Securing-DevOps/logging-pipeline,
2019.

R. K. Tesser and P. O. A. Navaux, “DIMVHCM: An on-line distributed
monitoring data collection model,” in 2012 20th Euromicro International
Conference on Parallel, Distributed and Network-based Processing.
IEEE, 2012, pp. 37-41.

A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight
distributed metric service: a scalable infrastructure for continuous mon-
itoring of large scale computing systems and applications,” in SC’14:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2014, pp. 154—
165.

P. C. Roth, D. C. Arnold, and B. P. Miller, “MRNet: A software-based
multicast/reduction network for scalable tools,” in SC’03: Proceedings
of the 2003 ACM/IEEE conference on Supercomputing. 1EEE, 2003,
pp. 21-21.

A. Nataraj, A. D. Malony, A. Morris, D. Arnold, and B. Miller, “A
framework for scalable, parallel performance monitoring using Tau and
MRNet,” in International Workshop on Scalable Tools for High-End
Computing (STHEC 2008), 2008.

I. Suriarachchi, S. Withana, and B. Plale, “Big provenance stream
processing for data intensive computations,” in 2018 IEEE 14th Inter-
national Conference on e-Science (e-Science), Oct 2018, pp. 245-255.
F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan,
H. Abbasi, and S. Klasky, “Goldrush: Resource efficient in situ scientific
data analytics using fine-grained interference aware execution,” in
Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ser. SC *13. New
York, NY, USA: ACM, 2013, pp. 78:1-78:12. [Online]. Available:

http://doi.acm.org/10.1145/2503210.2503279

A. Goswami, Y. Tian, K. Schwan, F. Zheng, J. Young, M. Wolf,
G. Eisenhauer, and S. Klasky, “Landrush: Rethinking in-situ analysis for
GPGPU workflows,” in 2016 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid). 1EEE, 2016, pp.
32-41.

Made Easy,”

