
Performance Debugging and Tuning of Flash-X
with Data Analysis Tools

Kevin Huck
University of Oregon
Eugene, Oregon, USA

Email: khuck@cs.oregon.edu

Xingfu Wu
Argonne National Laboratory

Lemont, Illinois, USA
Email: xingfu.wu@anl.gov

Anshu Dubey
Argonne National Laboratory

Lemont, Illinois, USA
Email: adubey@anl.gov

Antigoni Georgiadou
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
Email: georgiadoua@ornl.gov

J. Austin Harris
Oak Ridge National Laboratory

Oak Ridge, Tennessee, USA
Email: harrisja@ornl.gov

Tom Klosterman
Argonne National Laboratory

Lemont, Illinois, USA
Email: tklosterman@anl.gov

Matthew Trappett
University of Oregon
Eugene, Oregon, USA

Email: mtrappet@uoregon.edu

Klaus Weide
Argonne National Laboratory

Lemont, Illinois, USA
Email: kweide@anl.gov

Abstract—State-of-the-art multiphysics simulations running on
large scale leadership computing platforms have many variables
contributing to their performance and scaling behavior. We
recently encountered an interesting performance anomaly in
Flash-X, a multiphysics multicomponent simulation software,
when characterizing its performance behavior on several large-
scale platforms. The anomaly was tracked down to the interaction
between the use of dynamic allocation of scratch data and data
locality in the cache hierarchy. In this paper we present the
details of unexpected performance variability we encountered,
the extensive analysis using the performance measurement tool
TAU to collect the data and Python data analysis libraries to
explore the data, and our insights from this experience. In the
process, we discovered and removed or mitigated two additional
performance limiting bottlenecks for performance tuning.

I. INTRODUCTION

Simulations for grand challenges in science often require
multiphysics capabilities in the software that needs to run
on some of the largest computing platforms. Many degrees
of freedom exist on both sides of these requirements. Such
software is complex because it has many components that need
to interoperate with one another, and large scale platforms are
complex because of their size and the increasing heterogeneity.
Because of such complex platforms, the system software stack
in general, and compilers in particular, have challenges of their
own. The optimization search space is huge, and compilers
make conservative assumptions about optimizability of code
sections. As a result, sometimes, what may seem like an
obvious outcome of a hand-optimization may not turn out to
be true.

We recently encountered such instance of anomalous per-
formance behaviour in optimizing Flash-X, a newly-developed
code that has been derived from a multiphysics multicom-

ponent code FLASH [1]–[3] which has been a community
code for multiple science domains for many years. The in-
frastructural aspects of Flash-X have been built from ground
up to be compatible with the increasing heterogeneity in the
hardware and the increasing complexity because of higher
fidelity models within the code. The base discretization in
Flash-X is Eulerian, and the code has the ability to switch
between three flavors of management for the discretized mesh.
One of them is simple mesh where spacing between discrete
points is uniform throughout the domain, while the other
two use adaptive mesh refinement (AMR) [4], [5], where
spacing between points is dictated by the resolution needs
of the corresponding section of the domain. The two AMR
packages, AMReX [6], and Paramesh [7] have very different
approaches to data management and distribution (see II-A for
details), which makes one-on-one comparison between them
interesting.

During the course of this comparison we found some
redundant communications in Paramesh. Eliminating this com-
munication resulted in a very unexpected result. The commu-
nication cost went down, but the cost in some of the purely
computational sections of the physics solvers went up by more
than 20% in some instances. Further investigations led to
uncovering a few other non-obvious performance implications.
In this paper we discuss our experiments and finding, and
conduct performance debugging and tuning of Flash-X with
data analysis tools. Note that although accelerators play an im-
portant role in the overall performance of Flash-X for science,
they are not relevant for this study. The performance anomaly
that we describe was found in the CPUs, and the use of the
network in scaling is the biggest performance concern of AMR
in Flash-X, hence those are the performance aspects discussed

1

in this paper. For better understanding of the performance
anomaly of Flash-X, we use the performance measurement
tools TAU (Tuning and Analysis Utilities) Performance System
[8] and PAPI [9] to collect the data and develop data analysis
tools (a set of Jupyterlab [10] Python scripts) that utilize
Pandas [11] and Plotly [12] to automate the generation of
distribution and correlation visualizations. In this way, we
discover and remove or mitigate two additional performance
limiting bottlenecks for performance tuning.

The remainder of the paper is organized as follows: Section
II describes Flash-X and its precursor FLASH along with the
AMR packages supported in Flash-X, and Section III provides
a description of the systems used in this study. The observed
performance anomaly, and corresponding performance debug-
ging are discussed in Section IV. Section V discusses the
related work. Section VI gives our conclusions.

II. FLASH-X

Flash-X framework is built with a combination of adapted
architectural features from FLASH, and new features built
from the ground up to support growing heterogeneity along
orthogonal axes of hardware and application software. Hard-
ware because of proliferation of special purpose devices such
as accelerators and deeper memory hierarchy, and software
because of higher fidelity models, need more various solvers.

A. Different Flavors of AMR
AMR is effectively a compression methodology for com-

putations that do not need uniform resolution throughout the
domain. It reduces both the memory footprint and the amount
of computation. The technique has been around for more than
30 years and many flavors of its implementation have evolved
over the years [13]. Two of them, Paramesh and AMReX, are
of interest for our purpose because of being supported in Flash-
X. Both use a logically rectangular collection of cells spanning
a subsection of the domain as their basic abstraction. Paramesh
and FLASH call this collection a block, while AMReX calls
it a grid. Flash-X continues to the FLASH nomenclature,
therefore, in this paper we call it a block.

Paramesh is the only available AMR support in FLASH
and has been there since the inception of its code. It assumes
that all blocks are identical in the number of cells along each
dimension, and that the blocks are organized in an octree.
Without any loss of generality we call the coarsest level of
tree as the top level. Note that the top level can have more
than one block, where the organization effectively becomes a
collection of trees. Nodes from different trees can be adjacent
to one another if their corresponding blocks are adjacent
in the physical domain. Blocks at consecutive levels have
parent child relationship; upon refinement a d-dimensional
block generates 2d child blocks with identical number of
points, but half the spacing between the points. The union
of all child blocks occupies the same area of the domain as
the parent block. Figure 1 shows an example of an AMR
mesh with its corresponding octree. Supported parallelism in
Paramesh so far is exclusively MPI [14]. Load distribution

uses Morton space filling curve where each block is assigned
a weighting factor and a Morton number. Blocks are sorted and
divided between MPI ranks based on their Morton numbers.
The information about nearest neighbors and their refinement
level for each local block is maintained in each MPI rank.
Paramesh owns and manipulates the state data in a set of data
structures that support cell-centered, face-centered and edge-
centred discretizations.

AMReX is natively a patch based method. The fundamental
difference between an octree and a patched based AMR is
where a block can be placed relative to those in at the adjacent
coarser level. AMReX does not have a parent-child relation
between blocks and the only constraint on a finer level block
is that it should be fully enclosed by a region at the adjacent
coarser level, with at least on layer of coarser cells surrounding
it. Note that the enclosing coarse region can be comprised of
more than one block as long as they are next to each other.
AMReX’s data structures and algorithms follow a level-by-
level approach. That is, the data structures for state variables
span a level at a time. Thus for an n level mesh there will be
n instances of space variables data structures. Similarly, space
filling curve and load distribution are applied on each level
independently of other levels. In Flash-X, AMReX mimics
the appearance of an octree, that is, it accepts the constraints
on having equally sized (in terms of data points) blocks and
where they can be placed in the physical domain. However,
it does not follow the parent-child relations and continues to
manage all operations on a level-by-level basis.

In the context of using AMR in Flash-X it is obvious that
even if the domain decomposition is identical in terms of
blocks and their resolutions, everything else about the mesh
management is different. The memory layout, the communica-
tion patterns, the load distribution, etc. are completely different
between the two packages. Because of this Flash-X presents
a unique opportunity to understand the behaviour of level-
by-level vs the whole tree for producing identical scientific
results.

Similar to FLASH, in Flash-X we continue to differentiate
between the infrastructure, which knows about the platform
details and manages all the data movement and layout, from
physics, which primarily applies the numerical method on the
data that it is handed. The separation is enhanced by further
hiding any knowledge of data layout from physics through use
of smart iterators. The hierarchy of decomposition is deeper in
Flash-X through support of tiles in both the AMR packages.
The framework has also been given enhanced interfaces to
allow the AMR packages to be used in plug-and-play mode
with the physics. The details of these modifications and the
attendant refactoring of the code have been discussed in [15],
[16].

B. Application Setup
All experiments are conducted for this study using the Sod

[17] shock tube problem. It is a purely hydrodynamics ap-
plication, where the domain is initialized with a discontinuity
in density and pressure. In the configurations we used, the

2

Fig. 1. A 2D slice of the initial 3D mesh for the Sod shock tube problem.
Each of the outlined squares represents a block of 163 computational cells.

location of discontinuity is always a plane oriented perpendic-
ular to one of the Cartesian coordinate directions. One half of
the domain is at higher pressure and density than the other
half, with a sharp drop in pressure at the interface. When the
evolution begins, the discontinuity gives rise to a shock wave
that travels perpendicular to the plane of discontinuity. The
Sod problem is perfect for devising a weak scaling study for
AMR because replicating the domain along an axis parallel
to the plane of discontinuity as shown in Figure 2 increases
the amount of work proportional to the replication factor. It
is otherwise difficult to devise a weak scaling study for AMR
codes, because increasing the work by a predetermined factor
cannot be guaranteed by tweaking other parameters such as
levels of refinement, change in domain size, etc.

III. LEADERSHIP COMPUTING PLATFORMS

We conducted our experiments on the IBM® POWER9™
heterogeneous system Summit [18] of approximately 200
petaflops peak performance at Oak Ridge National Laboratory
and the Cray® XC40 Theta [19] of approximately 12 petaflops
peak performance at Argonne National Laboratory. In this
section, we briefly describe their specifications.

Summit has 4,608 IBM POWER System AC922 nodes.
Each node contains two IBM POWER9 processors with the
total 42 compute cores and six NVIDIA Volta V100 ac-
celerators. Each POWER9 processor is connected via dual
NVLINK bricks, each capable of a 25 GB/s transfer rate in
each direction. Nodes contain 512 GB of DDR4 memory for
use by the POWER9 processors and 96 GB of high-bandwidth
memory (HBM2) for use by the accelerators. Additionally,

High Density Low Density

Base Sod setup Changing setup for twice
as many nodes (replicate once)

Changing setup for n times
as many nodes (replicate n times)

Fig. 2. Setting up the Sod shock tube problem for weak scaling by replicating
the domain along one of the axes perpendicular to the axis of discontinuity.

each node has 1.6 TB of nonvolatile memory that can be used
as a burst buffer. Summit is connected to an IBM Spectrum
Scale filesystem providing 250 PB of storage capacity with a
peak write speed of 2.5 TB/s.

Theta has 4,392 Cray XC40 nodes. Each node has 64
compute cores (one Intel Phi Knights Landing (KNL) 7230),
shared L2 cache of 32 MB (1 MB L2 cache shared by two
cores), 16 GB of high-bandwidth in-package memory, 192 GB
of DDR4 RAM, and a 128 GB SSD. The Cray XC40 system
uses the Cray Aries dragonfly network with user access to a
Lustre parallel file system with 10 PB of capacity and 210
GB/s bandwidth. Theta provides two memory modes: cache
and flat. Based on our experiments, we find that using cache
mode outperforms using flat mode for Flash-X. In this paper,
we conduct all experiments using cache mode on Theta.

IV. PERFORMANCE ANOMALY

The Paramesh Grid implementation used by Flash-X con-
tains a subroutine, mpi_amr_boundary_block_info,
which collects some information about the faces of blocks
that coincide with the boundary of the simulation domain, and
makes this global information available as a heap-allocated
array on each rank. This subroutine is, by default, called once
every time the AMR grid has changed. We noticed that the
output of this subroutine, apparently intended to allow some
specialized handling of boundary conditions, was not actually
used anywhere, by either Paramesh or Flash-X. We therefore
decided to remove calls to this routine (called from here on,
for brevity, the “optional routine”), in order to eliminate any
negative effect on weak scaling behavior from it. We found
that rather than improving performance as expected, removing
the calls had the effect of slowing down the code on some
platforms. This is what we call “the anomaly”.

The optional routine allocates scratch space that is some
multiple of the number of local blocks that have any of their
neighboring blocks on the boundary, and there are collective
operations to share this information globally. In total, six
scratch arrays are allocated, some of which persist through

3

the evolution step. Thus the relevant portions of the routine
are allocations and global collective operations. Unlike most
scratch spaces allocated in Flash-X which tend to be multiples
of powers of 2 (because block sizes tend to be powers of 2),
these allocations are sized by the number of blocks, therefore
can have odd sizes.

The performance anomaly manifested itself on Theta when
the calls to this routine were removed. While the time spent
in communication decreased as expected, the overall evolution
time increased non-trivially, in some instances by as much
as 20% or more. Even more surprisingly, the degradation
in performance was observed in the routine that computes
Riemann states. This is a completely local routine, essentially
an expensive stencil calculation, that has nothing whatsoever
to do with the communication. Even more surprisingly, the
behavior was reproducible not only on the same number of
MPI ranks and therefore the same problem, but also across the
entire weak scaling study. Similar behavior to a less dramatic
extent was observed on the Bebop [20] cluster at Argonne
National Laboratory. On Summit the effect is more subtle, yet
exists as well. We could, therefore, eliminate the possibility
that the observed behavior was due to variability inherent
in the platforms because of workload differences at different
times.

A. Performance Debugging

1) Approach: Based on the symptoms of the problems,
we hypothesized that there was a side effect related to the
allocation and de-allocation of memory in the optional routine.
To test this hypothesis, we constructed an experiment in
which Flash-X was configured with and without the optional
routine call, labelled orig and nocall for the remainder of
this paper. To minimize variability as much as possible, the
two configurations were to be executed on Summit using
identical input configurations and using the same allocation
of hardware nodes. That is, we ran the simulations consecu-
tively in the same job submission script. While Flash-X has
built-in high level timers, we decided to use a performance
measurement and analysis tool to gain deeper insight. Flash-
X can be optionally integrated with the TAU (Tuning and
Analysis Utilities) Performance System [8], in which the built-
in application timers are replaced with TAU instrumentation
calls. Because of this existing integration, we chose to use the
TAU measurement library to collect the performance profile
data.

TAU is a portable profiling and tracing toolkit for per-
formance analysis of parallel programs and is capable of
gathering performance information through instrumentation of
functions, methods, basic blocks, and statements, as well as
event-based sampling. Both can be used at the same time, as a
form of hybrid profiling [21]. The instrumentation can be in-
serted in the source code using an automatic instrumentor tool
based on the Program Database Toolkit (PDT), dynamically
using DyninstAPI, at runtime in the Java Virtual Machine,
or manually using the instrumentation API. As mentioned

Fig. 3. Trace comparison between orig (above timeline, left profile) and nocall
(bottom timeline, right profile) Flash-X on Summit, visualized in Vampir. The
red regions represent time spent in MPI_Allreduce.

previously, TAU has been manually integrated into the Flash-X
source code.

TAU’s profile visualization tool, ParaProf, provides graphi-
cal displays of all the performance analysis results, in aggre-
gate and single node/context/thread forms. TAU also includes
PerfExplorer [22], a data analysis framework for large scale
profiles and for performing parametric studies such as ours. In
addition, TAU can generate event traces that can be displayed
with the Vampir [23], Paraver [24], or JumpShot [25] trace
visualization tools. In addition to collecting performance traces
or profiles of the application timers, TAU also provides the
capability of measuring MPI calls using the MPI interposition
wrappers, and is integrated with PAPI [9] to provide hardware
counter measurements for detailed single-node analysis.

While the analysis tools that come with TAU and com-
mercial trace analysis tools like Vampir are quite useful in
many performance analysis cases, we wanted to explore the
flexibility and performance provided by modern data analysis
libraries in Python, such as Pandas [11] and Plotly [12] to
understand the data distributions across the multi-dimensional
profile data we were collecting. We were also trying to tease
out relationships in the data that might lead us to the cause of
the side-effect, so correlation analysis seemed to be a natural
fit. We also needed the ability to re-run automated analysis in a
predictable and portable way. For those reasons, we developed
JupyterLab [10] analysis notebooks to assist in understanding
dataset variability and to compare results between different
configurations. For a majority of the analysis in this section
we used these notebooks, leveraging the TAU profile parser
library for Python that comes with the TAU installation to
parse profile data into Pandas dataframes to visualize it.

To get an understanding of the problem, we began our
analysis with interactive performance data visualizers. Initial
comparisons of Flash-X compiled with PGI v19.9 on Summit
showed that the differences were subtle. When directly com-
paring the mean times between the two runs in ParaProf, it ap-
peared that the nocall version was roughly 2% slower than the
orig version. Profiling with TAU showed that the performance
difference seemed to be reflected by the MPI_Allreduce

call in the conserveFlux call immediately after the com-
putation in custom:RiemannState.

Figure 3 is a zoomed-in region of two different runs in

4

Vampir, focusing on the conserveFlux call and all of its
children, including MPI_Allreduce. The orig run has a
white background (upper timeline, left profile) and the nocall
run has a lavender background (bottom timeline, right profile).
Clearly, the conserveFlux call is “taking longer” because
of a slight load imbalance in the main computation. A vast
majority of the time is in the first MPI_Allreduce call
during conserveFlux, and experienced MPI programmers
know that a long time spent in the collective is likely due to
a late arrival to the global collective operation.

Based on these early results, we concluded that something
in the mpi_amr_boundary_block_info call is causing
a side effect in the memory subsystem. We suspected that it is
due to the memory allocations and de-allocations happening
in that function, and has no relation to the MPI calls. For the
Sod shock wave simulation, the peak memory usage without
the call is roughly 6MB less than with the call, per process.

The next step was to capture cache-related hardware coun-
ters with PAPI and TAU to see if there was some correlation
between the code in mpi_amr_boundary_block_info

and overall cache performance, or whether the performance
imbalance was due to an unlikely workload imbalance. To
eliminate the possibility of a workload imbalance, the total
instructions counter was also captured.

We added some additional code instrumentation to fo-
cus on what is happening to cause the imbalance in
the main computation phase. Specifically, we added some
instrumentation around the Riemann state calculation in
hy_getRiemannState.F90 (other regions showed no
difference). What we discovered is that the call to
mpi_amr_boundary_block_info is somehow making
the L1 cache more efficient during this phase of the com-
putation - for some ranks. Without that call, some ranks
have a disproportionately higher number of L1 load misses,
which causes an imbalance, which leads to a slightly longer
synchronization time. For the worst rank, the L1 data cache
misses were 60% more.

Figure 4 shows a comparison of the actual performance
distribution of the custom:RiemannState subroutine be-
tween the orig and nocall configurations using 2688 MPI
ranks on Summit. The charts were generated by our notebook
analysis scripts. The nocall run was about 2% slower (452
seconds, instead of 443 seconds) overall. Figure 5 shows that
there is a slight, but not significant difference in the number of
instructions issued during custom:RiemannState, reject-
ing the possibility that the slowdown is caused by some kind of
explicit work imbalance. Figure 6 does provide a confirmation
that the L1 cache performance is related to the slowdown.
Figure 7 shows that the MPI_Allreduce time distribution
does go up in time (as does instructions), because MPI busy-
waits at synchronization points. This is also confirmed by
Figure 8, showing a negative correlation between the time
spent in custom:RiemannState and MPI_Allreduce.

At this point, rather than adding more instrumentation of
the sets of tight loops in the custom:RiemannState com-
putation which could potentially perturb the measurement, we

280 300 320 340
0

100

200

300

400

Method
orig
nocall

Inclusive TIME (seconds)

*** custom:RiemannState

co
un

t

Fig. 4. Inclusive Time stacked histogram of the custom:RiemannState
routine in Flash-X Sod simulation using 2688 ranks on Summit, with
associated box plot. The nocall configuration has a longer tail towards outliers,
suggesting an imbalance.

1.6M 1.62M 1.64M 1.66M 1.68M
0

200

400

600

800

Method

orig

nocall

Inclusive PAPI_TOT_INS

*** custom:RiemannState

c
o
u
n
t

Fig. 5. Inclusive total instructions completed stacked histogram of the
custom:RiemannState routine in Flash-X Sod simulation using 2688
ranks on Summit, with associated box plot. The distributions are quite similar,
suggesting a balanced work distribution.

enabled sampling in TAU, collecting a hybrid profile of timers
and samples. Figures 9 and 10 show a comparison between the
hybrid measurements of orig and nocall in ParaProf, using a
“tree table” view to provide context for the sample locations.
The tree table is sorted by inclusive time. Even though there
is some instruction skid (sampling is not always perfect), the
full data shows that the relatively higher cache misses (both
actual values and misses per instruction) are on lines 135,
136, 144, and 145 of hy_upwindTransverseFlux.F90
- collectively shown in this view as a summary of the samples
in that function. Those lines access the data in allocatable
arrays declared in hy_getRiemannState.F90 as sig,
lambda, leftEig and rghtEig.

What is additionally concerning is the amount of memory
management activity happening in this region of code. Nearly
163 seconds of the 251 seconds of the time is spent allocating
and freeing (the top three sample locations in both runs)

5

4k 6k 8k 10k
0

100

200

300

400

500

Method
orig
nocall

Inclusive PAPI_L1_LDM

*** custom:RiemannState

co
un

t

Fig. 6. Inclusive level 1 cache data load miss stacked histogram of the
custom:RiemannState routine in Flash-X Sod simulation using 2688
ranks on Summit. The nocall configuration has a longer tail towards outliers,
suggesting a possible cause for the imbalance.

20 40 60 80
0

50

100

150

Method
orig
nocall

Inclusive TIME (seconds)

MPI_Allreduce()

co
un

t

Fig. 7. Inclusive time stacked histogram of the MPI_Allreduce rou-
tine in Flash-X Sod simulation using 2688 ranks on Summit. The no-
call configuration has a wider and shifted distribution relative to the orig
configuration, indicating a negative correlation with extra time spent in
custom:RiemannState.

allocatable arrays. We determined that it is worth to
explore whether the arrays could be allocated once, and reused.

The results to this point led us to conclude that this partic-
ular scenario is taxing the memory subsystem, regardless of
architecture. It is possible that a large number of synchronous
processes per node (one per core), executing in lockstep,
making frequent allocation requests at the same time would
burden the OS kernel somewhat, regardless of architecture.
It is also possible that the L1 cache misses are a misleading
symptom, but are correlated with the true contention and are
a helpful proxy. In general, we suspect that there are so many
frequent, small allocation/deallocations happening that Flash-
X is taxing the system allocator. In the next section, we
analyze the performance of our code change on Theta, using
the same Jupyter notebook scripted analysis. The performance
differences between orig and nocall also exist on Theta, where

440

442

444

446

448

450

280

300

320

340

440 445 450

20

40

60

80

280 300 320 340 20 40 60 80

Method
orig
nocall

Correlation of timers using Inclusive TIME

*** custom:evolution*** custom:RiemannState MPI_Allreduce()

**
*

cu
st

om
:e

vo
lu

ti
on

**
*

cu
st

om
:R

ie
m

an
nS

ta
te

M
PI

_A
llr

ed
uc

e(
)

Fig. 8. Inclusive time scatterplot matrices of the top level
timer (custom:evolution), custom:RiemannState, and
MPI_Allreduce routines in the Flash-X Sod simulation using 2688
ranks on Summit. The nocall configuration has a wider distribution of
MPI_Allreduce and custom:RiemannState relative to the orig
configuration, and the matrix confirms the negative correlation between
MPI_Allreduce and custom:RiemannState.

Flash-X is compiled with GCC v9.3.0. Having concluded that
the performance anomaly is related to single-node properties,
we limit our further experiments in this section to just one
node.

2) Analysis: Having concluded that the increase in
processing time was related to memory behavior, and
having determined that the main computation was
aggressively using ALLOCATABLE array variables and
ALLOCATE/DEALLOCATE operations, we decided to
address the possibility that concurrent processes could be
contending for access to the memory subsystem. After some
manual code analysis and discussion, we determined that the
dynamically allocated array variables in the main computations
of hy_getRiemannState and hy_computeFluxes

were of a consistent size per process. That is, the dimensions
of the variables do not change over time, so the memory
could potentially be allocated once and reused. Three source
files were modified to implement this change, replacing
ALLOCATABLE array variables by global arrays of fixed
size. We refer to this version of the code as static.

Figure 11 shows the distribution of
custom:RiemannState for the orig, nocall, and static
versions of Flash-X when executed with 64 ranks on one
Theta node. The static implementation shows a considerable
performance improvement in the reduction of outliers, but
the mean performance across ranks has only reduced by less
than 8%, from 151.48 seconds to 139.81 seconds. However,

6

Fig. 9. Hybrid profile of orig configuration, displayed in ParaProf (TAU). The main computation spends a considerable amount of time in memory management
routines.

Fig. 10. Hybrid profile of nocall configuration, displayed in ParaProf (TAU). Relative to the orig configuration, the hy upwindtransverseflux routine is
taking longer, and reflects a 60% increase in L1 data cache misses, and a higher miss rate per instruction.

140 160 180 200
0

20

40

60

Method
orig
nocall
static

Inclusive TIME (seconds)

*** custom:RiemannState

co
un

t

Fig. 11. Inclusive time comparison of custom:RiemannState in orig, nocall,
and static configurations on Theta. The static configuration has a more
compact distribution with fewer outliers.

the elimination in outliers reduced MPI_Allreduce mean
time by nearly 31%, from 43.66 seconds to 30.18 seconds,
as shown by Figure 12. Other MPI routines showed similar
reductions in mean times. By eliminating the outliers, the
overall runtime was reduced by 12.64% percent, from 385.3
seconds to 336.6 seconds. Figure 13 shows that the reduction
in outliers is not due to a significant reduction in work
performed in the custom:RiemannState subroutine.
Instead, Figures 14 and 15 show that the overall reduction in
time is correlated with a reduction in L1 data cache misses
and a reduction in resource stalls.

B. Inferences
Figure 16 shows scatterplot matrices of inclusive time for

the main function in Flash-X, custom:RiemannState,

20 40 60
0

20

40

Method
orig
nocall
static

Inclusive TIME (seconds)

MPI_Allreduce()

co
un

t

Fig. 12. Inclusive time comparison of MPI_Allreduce in orig, nocall and
static configurations on Theta. The static configuration has a more compact
distribution with fewer outliers, reflecting less synchronization delays.

and MPI_Allreduce when executed with the three different
configurations of orig, nocall, and static. While the result is
encouraging, one visual detail sticks out in Figures 11, 14,
15, and 16. There is still one outlier with a long tail of time,
L1 data cache misses and resource stalls. That outlier also
happens to always be MPI rank 0. In fact, when running on
multiple nodes, the lowest rank on each node shows a similiar
behavior.

Our next hypothesis was that system noise on Theta is
perturbing rank 0 (or more accurately, the lowest MPI rank on
each node), causing it to be an outlier and increasing overall
time in ReimannState compute. To test this hypothesis, we
executed Flash-X with 2 nodes on Theta, enabling all PAPI
(preset) counters at a high level (monitoring them with TAU
periodically at a process level). Of the 128 total ranks, both

7

200B 210B 220B
0

10

20

30

40

Method

orig

nocall

static

Inclusive PAPI_TOT_INS

*** custom:RiemannState

c
o
u
n
t

Fig. 13. Inclusive instruction comparison of custom:RiemannState in
orig, nocall, and static configurations on Theta. The three configurations have
roughly equivalent work distributions.

250M 300M 350M 400M 450M
0

20

40

60

80

Method
orig
nocall
static

Inclusive PAPI_L1_DCM

*** custom:RiemannState

co
un

t

Fig. 14. Inclusive L1 data cache miss comparison of
custom:RiemannState in orig, nocall and static configurations
on Theta. The static configuration has a more compact distribution with
fewer outliers.

0.5B 1B 1.5B 2B 2.5B
0

50

100

150

Method
orig
nocall
static

Inclusive PAPI_RES_STL

*** custom:RiemannState

co
un

t

Fig. 15. Inclusive resource stall comparison of custom:RiemannState
in orig, nocall and static configurations on Theta. The static configuration
has a more compact distribution with fewer outliers.

330

340

350

360

370

380

120

140

160

180

200

340 360 380

20

40

60

150 200 20 40 60

Method
orig
nocall
static

Correlation of timers using Inclusive TIME

*** custom:evolution*** custom:RiemannState MPI_Allreduce()

**
*

cu
st

om
:e

vo
lu

ti
on

**
*

cu
st

om
:R

ie
m

an
nS

ta
te

M
PI

_A
llr

ed
uc

e(
)

Fig. 16. Inclusive time scatterplot matrices of the top level
timer (custom:evolution), custom:RiemannState, and
MPI_Allreduce routines in the Flash-X Sod simulation using 64
ranks on Flash-X. The static configuration has a tighter distribution relative
to the orig and nocall configurations, however there is still an outlier
showing a negative correlation between custom:RiemannState and
MPI_Allreduce.

ranks 0 and 64 were the worst performers. Evaluating the
counters showed that L1 instruction cache misses, L1 data
cache misses, and cycles without an instruction issue were all
relatively higher for ranks 0 and 64, suggesting some cache
pollution, likely due to contention for core 0.

Following instructions about specialization in [26], we
configured our job on Theta to reserve one core of the node for
system processes (“specialization”), and ran with 1 fewer MPI
rank. We also configured a job to run with 1 fewer rank without
reserving a core for system processes. The results show that
custom:RiemannState is very well balanced now, and
performs even faster - the total run time was reduced 18.5% to
314.09 seconds. The result is even more impressive when we
factor in the fact that the 63 ranks of the static run each have
1/64 more work to do with 1 fewer rank in the allocation than
the 64 rank orig run. Also interesting to note is that the orig
and nocall configurations did not run faster when reserving
a core for system processes - they ran in roughly the same
amount of time. The job configuration with 63 ranks but did
not use specialization was also faster than the original run, but
only marginally.

As shown in Figure 18, the main takeaway is that on
Theta, using 63 ranks per node and reserving one core for
“specialization” (see aprun man page for the -r argument)
improves Flash-X performance overall. The mean performance
of custom:RiemannState is 1/64 worse, but the removal
of the final outlier trims approximately 22 seconds off the

8

320

340

360

380

140

160

180

200

320 340 360 380

20

40

60

80

140 160 180 200 20 40 60 80

Method
orig
nocall
static

Correlation of timers using Inclusive TIME

*** custom:evolution*** custom:RiemannState MPI_Allreduce()

**
*

cu
st

om
:e

vo
lu

ti
on

**
*

cu
st

om
:R

ie
m

an
nS

ta
te

M
PI

_A
llr

ed
uc

e(
)

Fig. 17. Inclusive time scatterplot matrices of the top level
timer (custom:evolution), custom:RiemannState, and
MPI_Allreduce routines in the Flash-X Sod simulation using 63
ranks on Flash-X, reserving one core for system processes. The static
configuration has a much tighter distribution relative to the orig and nocall
configurations, and significant outliers are gone.

140 160 180 200
0

20

40

60

80

Method
orig
nocall
static

Inclusive TIME (seconds)

*** custom:RiemannState

co
un

t

Fig. 18. Inclusive time comparison of custom:RiemannState in orig,
nocall and static configurations on Theta, using 63 ranks and reserving a core
for system processes. Compared with Figure 13, the static configuration no
longer has the long tail outlier, reflecting even less synchronization delays.
Interestingly, the orig and nocall versions did not benefit from reserving a
core for system processes.

runtime.

V. RELATED

Ever since Python libraries and extensions like Pandas [11],
[27], Plotly [12], [28], and Jupyter [29] have been made
widely available, there is no shortage of users who have
taken advantage of them to rapidly prototype analysis tools

to tease information out of large multidimensional data sets.
That said, there is specific performance analysis related and
prior work to mention. The Java-based PerfExplorer [22] tool
initially utilized the Octave [30] and later the Weka [31] data
mining libraries to perform clustering and correlation analysis
on large multidimensional performance data. The PerfExplorer
GUI had some predefined analyses as well as a ‘custom’
chart interface, and an embedded – but limited – Python
interpreter allowed for scripted analysis, but the workflow
lacked flexibility and required an expert programmer to create
new analyses or outputs. The Hatchet [32] library provides a
Python library for parsing performance data from many dif-
ferent formats, including TAU. The Hatchet library introduced
the GraphFrame data model and specializes in performance
analysis on the individual nodes of an application’s calling
context tree. The GraphFrame provides a Pandas DataFrame
entry for each unique node in the tree. While it could have been
used as a data model, the standard Pandas dataframe import
library that comes with TAU was sufficient for this analysis.
The analysis developed in our Jupyter notebooks could easily
and will likely be modified to also use GraphFrame data.

Finally, load imbalance has been a known problem since
the introduction of parallel programming, and many tools
have been developed to detect it, including EXPERT [33],
CUBE [34], Paradyn [35], KappaPi [36], JavaPSL [37], and
HPCToolkit [38], among others. The approach in this paper
is not fundamentally different from those tools, however the
visualization and analysis capability of Jupyterlab provides a
new era of flexibility and extensibility.

VI. CONCLUSIONS

The extensive fine-grained performance analysis investi-
gated in this paper was triggered by the non-intuitive outcome
of an optimization effort. Our findings re-emphasize the notion
that modern supercomputers and their software stacks have
many moving parts that may not always interact with one
another efficiently in a straightforward way. Increasing degrees
of freedom in the optimization space make it much harder to
explore, and reasoning about correlation between code modi-
fication and its performance change can become very difficult.
Since there is no way to avoid continuing increase in platform
and application complexity, the only available option is to
facilitate meaningful communication between the system and
the optimizer. For this reason, we developed a set of Jupyterlab
Python scripts that utilize Pandas and Plotly to automate the
generation of distribution and correlation visualizations for
better understanding of performance anomaly of Flash-X. The
scripts and associated software are open source, and freely
available on GitHub [39].

ACKNOWLEDGEMENTS

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,

9

and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies publicly and display
publicly, by or on behalf of the Government. The Department
of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE
Public Access Plan. http://energy.gov/downloads/doe-public-
access-plan. This work was also supported by the Scientific
Discovery through Advanced Computing (SciDAC) program
funded by U.S. Department of Energy, Office of Science, Ad-
vanced Scientific Computing Research (ASCR) under contract
DE-SC0021299.

REFERENCES

[1] A. Dubey, K. Antypas, M. K. Ganapathy, L. B. Reid, K. Riley,
D. Sheeler, A. Siegel, and K. Weide, “Extensible component-based
architecture for FLASH, a massively parallel, multiphysics simulation
code,” Parallel Computing, vol. 35, no. 10-11, pp. 512–522, 2009.

[2] A. Dubey, K. Antypas, A. Calder, C. Daley, B. Fryxell, J. Gallagher,
D. Lamb, D. Lee, K. Olson, L. Reid, P. Rich, P. Ricker, K. Riley, R. Ros-
ner, A. Siegel, N. Taylor, F. Timmes, N. Vladimirova, K. Weide, and
J. ZuHone, “Evolution of FLASH, a multiphysics scientific simulation
code for high performance computing,” International Journal of High
Performance Computing Applications, 28(2):225–237, 2013.

[3] A. Dubey, L. B. Reid, and R. Fisher, “Introduction to FLASH 3.0, with
application to supersonic turbulence,” Physica Scripta, vol. T132, 2008,
topical Issue on Turbulent Mixing and Beyond, results of a conference
at ICTP, Trieste, Italy, August 2008.

[4] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
partial differential equations,” Journal of Computational Physics, vol. 53,
no. 3, pp. 484–512, 1984.

[5] M. J. Berger and P. Colella, “Local adaptive mesh refinement for shock
hydrodynamics,” Journal of Computational Physics, vol. 82, no. 1, pp.
64–84, 1989.

[6] AMReX, https://amrex-codes.github.io/, Version 21.01-47, 2020.
[7] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer,

“PARAMESH: A parallel adaptive mesh refinement community toolkit,”
Computer Physics Communications, vol. 126, no. 3, pp. 330–354, 2000.

[8] S. S. Shende and A. D. Malony, “The tau parallel performance system,”
The International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[9] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with papi-c,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 157–173.

[10] P. Jupyter, “Project jupyter — home,” http://jupyter.org, 2021.
[11] W. McKinney et al., “pandas: a foundational python library for data

analysis and statistics,” Python for High Performance and Scientific
Computing, vol. 14, no. 9, pp. 1–9, 2011.

[12] Plotly, “Plotly: The front end for ml and data science models.” http:
//plotly.com, 2021.

[13] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan,
P. Colella, D. Graves, M. Lijewski, F. Löffler, B. O’Shea, E. Schnetter,
B. V. Straalen, and K. Weide, “A survey of high level frameworks
in block-structured adaptive mesh refinement packages,” Journal of
Parallel and Distributed Computing, vol. 74, no. 12, pp. 3217–3227,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731514001178

[14] Message Passing Interface Forum, http://www.mpi-forum.org/docs/
mpi-3.0/mpi30-report.pdf.

[15] J. O’Neal, K. Weide, and A. Dubey, “Experience report: Refactoring the
mesh interface in FLASH, a multiphysics software,” in 2018 IEEE 14th
International Conference on e-Science (e-Science), 2018, pp. 1–6.

[16] A. Dubey, J. O’Neal, K. Weide, and S. Chawdhary, “Distillation of Best
Practices from Refactoring Flash for Exascale,” SN Computer Science,
1(4):223, 2020.

[17] G. A. Sod, “A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws,” Journal of Computational
Physics, vol. 27, no. 1, pp. 1–31, 1978. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0021999178900232

[18] Summit, “IBM Power9 with NVidia V100 Heterogeneous System,”
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/,
2020.

[19] Theta, “Cray XC40 System,” https://www.alcf.anl.gov/theta, 2020.
[20] Bebop, https://www.lcrc.anl.gov/systems/resources/bebop/, 2020.
[21] A. Morris, A. D. Malony, S. Shende, and K. Huck, “Design and

implementation of a hybrid parallel performance measurement system,”
in 2010 39th International Conference on Parallel Processing. IEEE,
2010, pp. 492–501.

[22] K. A. Huck, A. D. Malony, S. Shende, and A. Morris, “Knowledge
support and automation for performance analysis with perfexplorer 2.0,”
Scientific programming, vol. 16, no. 2-3, pp. 123–134, 2008.

[23] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel, “The vampir performance analysis tool-
set,” in Tools for high performance computing. Springer, 2008, pp.
139–155.

[24] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to
visualize and analyze parallel code,” in Proceedings of WoTUG-18:
transputer and occam developments, vol. 44, no. 1. Citeseer, 1995,
pp. 17–31.

[25] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward scalable perfor-
mance visualization with jumpshot,” The International Journal of High
Performance Computing Applications, vol. 13, no. 3, pp. 277–288, 1999.

[26] S. Chunduri, “Run-to-run variability on theta and best prac-
tices for performance benchmarking,” https://www.alcf.anl.gov/files/
slides-chunduri-alcf-developer-session-2018-09.pdf, 2018.

[27] W. McKinney et al., “Data structures for statistical computing in
python,” in Proceedings of the 9th Python in Science Conference, vol.
445, no. 1. Austin, TX, 2010, pp. 51–56.

[28] P. T. Inc. (2015) Collaborative data science. Montreal, QC. [Online].
Available: https://plot.ly

[29] M. Ragan-Kelley, F. Perez, B. Granger, T. Kluyver, P. Ivanov, J. Frederic,
and M. Bussonnier, “The jupyter/ipython architecture: a unified view of
computational research, from interactive exploration to communication
and publication.” in AGU Fall Meeting Abstracts, vol. 2014, 2014, pp.
H44D–07.

[30] J. W. Eaton, “Gnu octave,” https://octave.org, 2022.
[31] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[32] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: pruning the overgrowth
in parallel profiles,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–21.

[33] F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. Moore, “An algebra for
cross-experiment performance analysis,” in International Conference on
Parallel Processing, 2004. ICPP 2004. IEEE, 2004, pp. 63–72.

[34] F. Wolf and B. Mohr, Automatic performance analysis of SMP cluster
applications. Citeseer, 2001.

[35] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth,
R. B. Irvin, K. L. Karavanic, K. Kunchithapadam, and T. Newhall, “The
paradyn parallel performance measurement tool,” Computer, vol. 28,
no. 11, pp. 37–46, 1995.

[36] J. Jorba, T. Margalef, and E. Luque, “Performance analysis of parallel
applications with kappapi 2.” in PARCO. Citeseer, 2005, pp. 155–162.

[37] T. Fahringer and C. S. Júnior, “Modeling and detecting performance
problems for distributed and parallel programs with javapsl,” in SC’01:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing.
IEEE, 2001, pp. 38–38.

[38] N. R. Tallent, L. Adhianto, and J. M. Mellor-Crummey, “Scalable
identification of load imbalance in parallel executions using call path
profiles,” in SC’10: Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2010, pp. 1–11.

[39] K. Huck, “Python scripts for automating the analysis of tau profile data.”
https://github.com/UO-OACISS/analysis-scripts, 2022.

10

https://amrex-codes.github.io/
http://jupyter.org
http://plotly.com
http://plotly.com
http://www.sciencedirect.com/science/article/pii/S0743731514001178
http://www.sciencedirect.com/science/article/pii/S0743731514001178
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.sciencedirect.com/science/article/pii/0021999178900232
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.alcf.anl.gov/theta
https://www.lcrc.anl.gov/systems/resources/bebop/
https://www.alcf.anl.gov/files/slides-chunduri-alcf-developer-session-2018-09.pdf
https://www.alcf.anl.gov/files/slides-chunduri-alcf-developer-session-2018-09.pdf
https://plot.ly
https://octave.org
https://github.com/UO-OACISS/analysis-scripts

	Introduction
	Flash-X
	Different Flavors of AMR
	Application Setup

	Leadership Computing Platforms
	Performance Anomaly
	Performance Debugging
	Approach
	Analysis

	Inferences

	Related
	Conclusions
	References
	Reproducibility Information: Artifact Description (AD)

