
Broad Performance Measurement Support for
Asynchronous Multi-Tasking with APEX

Kevin A. Huck
Oregon Advanced Computing Institute for Science and Society (OACISS)

University of Oregon
Eugene, Oregon USA

khuck@cs.uoregon.edu 0000-0001-7064-8417

Abstract—APEX (Autonomic Performance Environment for
eXascale) is a performance measurement library for distributed,
asynchronous multitasking runtime systems. It provides support
for both lightweight measurement and high concurrency. To
support performance measurement in systems that employ user-
level threading, APEX uses a dependency chain in addition to
the call stack to produce traces and task dependency graphs.
APEX also provides a runtime adaptation system based on the
observed system performance. In this paper, we describe the
evolution of APEX from its design for HPX to support an array of
programming models and abstraction layers and describe some of
the features that have evolved to help understand the asynchrony
and high concurrency of asynchronous tasking models.

Index Terms—asynchronous multitasking, performance mea-
surement, HPX, OpenMP, Kokkos, GPU programming

I. INTRODUCTION

APEX (Autonomic Performance Environment for eXas-
cale) [1] is a performance measurement library for distributed,
asynchronous multitasking runtime systems. Implemented in
C++, it provides support for both lightweight measurement
and high concurrency. To support performance measurement in
systems that employ user-level threading, APEX uses a depen-
dency chain in addition to the call stack to produce traces and
task dependency graphs. The first key component of APEX
is the performance measurement support. APEX supports
both synchronous (so-called first person) and asynchronous
(third person) measurements. The synchronous measurement
component in APEX uses an event API and event listeners.
Whenever a task is created, started, yielded or stopped, APEX
will respectively create, start/resume, yield, or stop timers for
measurements. Dependencies between tasks are also tracked,
using globally unique identifiers (GUID). The asynchronous
measurement involves periodic or on-demand interrogation of
operating system, hardware or runtime states (e.g. CPU utiliza-
tion, memory usage, energy consumption). The third person
measurement also includes background buffer processing to
record GPU kernel execution and memory transfers to and
from GPUs. Available runtime counters (e.g. idle rate, queue
lengths) are also captured on-demand or on a periodic basis.

This work was supported by the Scientific Discovery through Advanced
Computing (SciDAC) program funded by U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research (ASCR) under contract
DE-SC0021299.

The other key component of APEX is the Policy Engine.
The Policy Engine of APEX provides a lightweight API to
engineer policies that can improve the performance of the
application, execute a desired functionality on the runtime or
select important runtime and application parameters. There are
two ways to register a policy: either explicitly triggered or
asynchronously periodic. A triggered policy can be initiated
by a specific event within a runtime. There is a set of generic
events provided by APEX, such as initialization/finalization,
creation of a new thread, timer start/stop events, or message
send/receive events. Additionally, it is also possible to provide
a user defined event, also known as a custom trigger. The
second class of policies, the periodic policy, operates without
any event. Instead, this policy uses a defined timer which
is specified during the policy’s registration. All policies are
stored in a policy queue and executed as instructed. The policy
engine is integrated with Active Harmony [2], an online tuning
library. Defined policies can use this library to search for a set
of optimum parameters by minimizing a measurement value
from APEX, such as wall time of a measured region/task or
by looking at any other introspection data gathered by APEX.

APEX and HPX

APEX was originally designed to support the specific needs
of HPX [3], [4]. HPX is an Asynchronous Many-Task Runtime
system that is implemented in C++. The library implements all
APIs related to concurrency and parallelism as mandated by
recent ISO standards C++20 and C++23 in a conforming way.
In this context, it implements all the parallel algorithms as de-
scribed in the C++ standard. It has been described in detail in
other publications, such as [5]–[7]. HPX has been used as an
underlying runtime platform for several large scale scientific
simulations, such as the Octo-Tiger astrophysics application
(see [8] for more details). HPX manages local and distributed
parallelism while observing all necessary data dependencies.
Data and task dependencies can be expressed with HPX
futures, and chained together in an execution graph. This graph
can be built asynchronously, with the HPX worker threads
processing the tasks when their dependencies are fulfilled.
This task-based programming model is particularly useful for
parallel implementations of adaptive, tree-based codes like
Octo-Tiger, as the task graph is built quickly when traversing
the tree to make concurrent work available to the system. Since

1

https://orcid.org/0000-0001-7064-8417

its first inception in 2015, APEX has been used in several
HPX-related performance studies, most recently [9], [10] and
with the Quantum Monte Carlo application DCA++ [11].

HPX poses a particularly difficult problem for operating
system (OS) thread-centric measurement systems. HPX tasks
are created, scheduled, executed, and usually yielded and re-
sumed by the runtime system. This is particularly challenging
because many different OS threads may have participated in
the execution of the HPX task during its lifetime, and the
calling context tree is meaningless to the application developer
because it consists of runtime system functions, not application
tasks. For this reason, APEX is integrated into the HPX thread
scheduler, uniquely identifies each task with a GUID, and
tracks all state transitions for a given task. A more complete
description of this integration can be found in [1].

II. RELATED

Several performance tools use measurement for the pur-
poses of offline performance analysis, including TAU [12],
HPCToolkit [13], Score-P [14], Scalasca [15], Extrae [16],
Caliper [17], Timemory [18], as well as many architecture-
specific vendor offerings. All are powerful and capable tools
in their own right, however, they were designed for offline
performance analysis and tuning, typically focusing on first-
person performance measurement of tied tasks/functions on a
per-thread (OS thread) basis. Existing and emerging program-
ming models present technical challenges that the designers
of those measurement systems had not considered: untied task
execution and migration, runtime thread control and execution,
third-person observation, and runtime performance tuning.
Also, as these tools are inescapably intrusive, they are not
designed to be integrated permanently into an application
for continuous performance introspection, but rather to be
used in an iterative execute-analyze-tune cycle. In contrast,
APEX is designed to perform asynchronous first- and third-
person measurement for the purpose of supporting runtime
introspection and performance adaptation, as well as offline
analysis. Sampling support like that provided by HPCToolkit
and TAU provide no insight into the task dependency chain,
but rather focus on the explicit call stack that often includes
many layers of runtime functions that provide no value to the
user. Finally, vendor tools focus on a particular architecture,
and don’t provide portable performance measurement and
analysis required for cross-platform studies. What also sets
APEX apart from runtime-specific solutions is that it has been
refactored from its HPX-centric design to a more general
purpose asynchronous multi-tasking runtime profiling library.

III. MEASUREMENT CAPABILITIES

For all of the programming models mentioned in section IV,
APEX will capture timers associated with each of the first
person measurements, and capture counters associated with
third person measurements. The first person measurements
come from preloaded library wrappers, runtime callbacks, and
in some cases instrumentation. The third person measure-
ments are captured when APEX periodically (configurable,

as frequently as 200Hz) queries operating system, monitor-
ing software, and hardware counters to observe utilization
and health statistics. This includes not only CPU, memory,
network, power/energy, and filesystem stats but also GPU
utilization metrics and power consumption, where available.
For asynchronous GPU activity, runtimes typically buffer
profiling events and provide these buffers to performance tools
to be consumed by a background processing thread. These
events include kernel execution, memory transfer events, and
in some cases synchronization events.

A. Task Dependencies

One of the key features of asynchronous multi-tasking
runtimes is the ability to spawn millions of tasks within an
algorithm, providing the runtime scheduler the opportunity to
avoid latency, contention for shared objects, and starvation for
work [19]. However, this presents a problem for performance
measurement tools that are designed to handle critical paths
with respect to a calling context tree. With runtimes like HPX
or even GPU acceleration libraries like CUDA, HIP or SYCL,
a conventional calling context tree may bear little resemblance
to the logical task dependency graph associated with the algo-
rithm. While APEX can and does keep track of calling context
trees, it also has the ability to track task dependencies across
threads and devices. One of the ways APEX represents the task
dependencies is with task graphs and trees. Figure 1 shows a
task graph representation of a trivial fibonacci program that
executes the fib(n − 1) tasks with a C++ std::async()
future, and the fib(n−2) tasks are executed with synchronous
function call. In addition, the pthread_create() wrapper
is used to capture how the LLVM runtime spawns a new
POSIX thread for each asynchronous future request. In this
graph, each task type is only represented once, and nodes
are revisited in the graph. Contrast that with Figure 2, which
shows a task tree representation. In this case, each unique task
relationship is represented based on whether the path to that
task is unique. In this example, each parent task only creates
one of each child task type. Figure 4 demonstrates how task
relationships are represented in trace data, using flow events
(see Section III-G).

B. Hardware Counters

APEX is also integrated with PAPI [20], a hardware counter
abstraction and measurement library. PAPI provides a portable
interface to capture hardware metrics on vastly different and
heterogeneous systems. PAPI provides support to the counters
through a component interface. Several components of use by
APEX include Linux perf event counters, “uncore” counters
(where supported), LM sensors, power and energy counters, as
well as GPU counter support for both kernel measurement as
well as utilization. When used with performance portability
wrappers like Kokkos (see Section IV-F), PAPI component
measurement can easily be used to capture GPU hardware
metrics even when the kernels and memory transfers aren’t
being explicitly measured via vendor support libraries.

2

Elapsed Time: 0.003146 seconds
Cores detected: 8
Worker threads observed: 90
Available CPU time: 0.025168 seconds

pthread_create
 calls: 89
 time: 0.003231s
 per call: 3.63034e-05s

OS Thread: APEX pthread wrapper
 calls: 89
 time: 0.034238s
 per call: 0.000384697s count: 89

void* std::__1::__thread_proxy<>(void*)
 calls: 89
 time: 0.023682s
 per call: 0.00026609s

 count: 89

APEX MAIN
 calls: 1
 time: 0.003146s
 per call: 0.003146s

Main Thread: APEX main thread
 calls: 1
 time: 0.003076s
 per call: 0.003076s

 count: 1 count: 1
fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 177
 time: 0.021094s
 per call: 0.000119175s

 count: 89

 count: 88

 count: 88

Fig. 1. Example of a task graph of fibonacci(10) in standard C++. For each sub-task, fib(n-1) is executed with std::async() and fib(n-2) is
executed synchronously. Recursive calls to fib() revisit existing nodes in the graph. The more intensely the graph node is colored red, the more it contributes
to the overall runtime.

Elapsed Time: 0.004099 seconds
Cores detected: 8
Worker threads observed: 90
Available CPU time: 0.032792 seconds

APEX MAIN
 calls: 1.000000
 time: 0.004099

Main Thread: APEX main thread
 calls: 1.000000
 time: 0.004047

pthread_create
 calls: 1.000000
 time: 4.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000625

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000614

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000193

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000154

pthread_create
 calls: 1.000000
 time: 1.4e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000125

pthread_create
 calls: 1.000000
 time: 1.6e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000101

pthread_create
 calls: 1.000000
 time: 1.2e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 6.7e-05

pthread_create
 calls: 1.000000
 time: 1.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.4e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 5.5e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000131

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000113

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 8.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 2.3e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000175

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.00013

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000118

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.2e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 3.9e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000215

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000168

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000153

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4.5e-05

pthread_create
 calls: 1.000000
 time: 1.7e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.9e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000451

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.00043

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000356

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.1e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000376

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2.6e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00068 void* std::__1::__thread_proxy<>(void*)

 calls: 1.000000
 time: 0.000457

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000243

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000183

pthread_create
 calls: 1.000000
 time: 2.5e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 1.2e-05

pthread_create
 calls: 1.000000
 time: 2.6e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00057

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000509

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000327

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000222

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000178

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.5e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00084

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000674

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000369

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 2.4e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000327

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000294

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 6e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000394

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000363

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000354

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000222

pthread_create
 calls: 1.000000
 time: 1.7e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 9.6e-05

pthread_create
 calls: 1.000000
 time: 3.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 2.3e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000395

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000314

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000194

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000211

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.00011

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000321

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000305

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000236

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 7.1e-05

pthread_create
 calls: 1.000000
 time: 2.6e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 6.7e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 4.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000398

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000258

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000243

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 2.6e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000228

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.00021

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000191

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.8e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00031

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 9.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000384 void* std::__1::__thread_proxy<>(void*)

 calls: 1.000000
 time: 0.000369

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.00033

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000255

pthread_create
 calls: 1.000000
 time: 2.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4.4e-05

pthread_create
 calls: 1.000000
 time: 1.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.5e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00016

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 1.1e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000252

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.00019

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000112

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 1.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000298

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.00028

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.0001

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 4.9e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000257

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000172

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000251

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000234

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000221

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000105

pthread_create
 calls: 1.000000
 time: 4.2e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.2e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000165

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 8.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 7.2e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00032

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000305

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000549

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000534

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000441

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000376

pthread_create
 calls: 1.000000
 time: 1.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 1e-06

pthread_create
 calls: 1.000000
 time: 3.3e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 9.2e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 7.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000716

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000683

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000191

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 2.8e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000271

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000249

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000233

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000132

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 9.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000688

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000659 fib(int, std::__1::shared_ptr<apex::task_wrapper>)

 calls: 1.000000
 time: 0.000609

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000489

pthread_create
 calls: 1.000000
 time: 1.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000231

pthread_create
 calls: 1.000000
 time: 2.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 5e-05

pthread_create
 calls: 1.000000
 time: 1.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 1e-06

pthread_create
 calls: 1.000000
 time: 1.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.001067

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000676

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000129

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 8e-06

pthread_create
 calls: 1.000000
 time: 1.9e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000155

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000143

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00066

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000425

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000409

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000188

pthread_create
 calls: 1.000000
 time: 2.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 3.4e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000211

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000267

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 9.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 6.6e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.1e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000572

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000404

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000389

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 3.8e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00019

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000174

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06OS Thread: APEX pthread wrapper

 calls: 1.000000
 time: 0.001092

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000855

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000841

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000363

pthread_create
 calls: 1.000000
 time: 4.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000293

pthread_create
 calls: 1.000000
 time: 1.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.8e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000174

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2.5e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000354

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000337

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000215

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000207

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000182

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000169

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.3e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000134

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000118

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000215 void* std::__1::__thread_proxy<>(void*)

 calls: 1.000000
 time: 0.000194

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000181

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000118

pthread_create
 calls: 1.000000
 time: 2.5e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000494

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000416

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000154

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 1.9e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00012

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 8.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.001033

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.001009

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000775

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000402

pthread_create
 calls: 1.000000
 time: 1.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.8e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000285

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000115

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 5e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000676

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000383

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000335

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 2e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000218

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000146

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 9.7e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 3.4e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 9.9e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 4.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 7e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000719

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000677

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000632

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000506

pthread_create
 calls: 1.000000
 time: 1.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000195

pthread_create
 calls: 1.000000
 time: 2.6e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000124

pthread_create
 calls: 1.000000
 time: 2e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 3.4e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 4.4e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2.4e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000476

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000282

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000141

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 1e-06

pthread_create
 calls: 1.000000
 time: 1.3e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000382

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000261

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000204

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 1.8e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000369

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000349

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00087 void* std::__1::__thread_proxy<>(void*)

 calls: 1.000000
 time: 0.000584 fib(int, std::__1::shared_ptr<apex::task_wrapper>)

 calls: 1.000000
 time: 0.000558

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000321

pthread_create
 calls: 1.000000
 time: 1.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 2.4e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000494

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000156

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 6.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 3e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00027

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 4.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000813

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000629 fib(int, std::__1::shared_ptr<apex::task_wrapper>)

 calls: 1.000000
 time: 0.000468

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.00024

pthread_create
 calls: 1.000000
 time: 1.4e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 3.1e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000495

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 5.5e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000499

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000349

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000321

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 1.5e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000212

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000195

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000181

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.9e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 8.3e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 3.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000867

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000488

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000474

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000363

pthread_create
 calls: 1.000000
 time: 2.1e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000191

pthread_create
 calls: 1.000000
 time: 2.5e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

pthread_create
 calls: 1.000000
 time: 1.9e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.00098

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000197

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000177

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 5.2e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 3.5e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.001241

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.00082

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000718

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000317

pthread_create
 calls: 1.000000
 time: 1.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 3.1e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000299

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000281

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000642

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000438

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000217

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 1.6e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000137

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000103

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 8.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.3e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 8.9e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 6e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000585

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000452

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000428

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.00032

pthread_create
 calls: 1.000000
 time: 2e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000171

pthread_create
 calls: 1.000000
 time: 2.8e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.5e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 8.1e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 3.6e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 1.2e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000434

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000402

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000289

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

pthread_create
 calls: 1.000000
 time: 2.3e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000224

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000205

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 6.3e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.8e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 8.3e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000857

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000577 fib(int, std::__1::shared_ptr<apex::task_wrapper>)

 calls: 1.000000
 time: 0.000564

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000109

pthread_create
 calls: 1.000000
 time: 2.4e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.9e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000216

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 0.000199

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.00012

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 2.1e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 6.5e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 5.4e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 0.000345 void* std::__1::__thread_proxy<>(void*)

 calls: 1.000000
 time: 0.000213

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 0.000152

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 7.4e-05

pthread_create
 calls: 1.000000
 time: 1.9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 1.7e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 4.8e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 2e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 7.4e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 5.4e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 4.4e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 2e-06

pthread_create
 calls: 1.000000
 time: 1.6e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 9.8e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 9e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 7.7e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 3e-06

pthread_create
 calls: 1.000000
 time: 2.4e-05

OS Thread: APEX pthread wrapper
 calls: 1.000000
 time: 2.3e-05

void* std::__1::__thread_proxy<>(void*)
 calls: 1.000000
 time: 1.2e-05

fib(int, std::__1::shared_ptr<apex::task_wrapper>)
 calls: 1.000000
 time: 1e-06

Fig. 2. Example of a task tree of fibonacci(10) in standard C++. For each sub-task, fib(n-1) is executed with std::async() and fib(n-2) is executed
synchronously. Recursive calls to fib() create new sub-trees. The more intensely the tree node is colored red, the more it contributes to the overall runtime.

C. GPU Metrics

As described in the CUDA and HIP subsections IV-D
and IV-E, support for observing both host-side callbacks and
asynchronous device event activity is provided by vendor
libraries. These libraries also provide hardware counter support
for capturing metrics associated with kernel activity on GPUs.
While APEX could observe these metrics directly, it makes
more sense to leverage the component support in PAPI to
access both CUPTI and Rocprofiler hardware metrics. Like
other PAPI components, GPU hardware counter support is
leveraged by APEX.

D. GPU Memory Tracking

Similar to the CUDA cuda-memcheck [21] program,
APEX has the ability to detect memory leaks in GPU code,
however it works for all supported GPU architectures, using
a common software approach. For both CUDA and HIP
programs, APEX keeps track of all GPU memory allocations
and records the number of bytes allocated, the address returned
by the allocator, and the backtrace from when the allocation
occurred. The record is stored in a std::unordered_map,
indexed by the pointer address. Later, when the allocation is
freed, the record with that pointer address is removed from
the map. At the end of execution, any records remaining in
the map are assumed to have been leaked. Interestingly, the
following simple program leaks 1024 bytes from line 9, and
it is not reported by cuda-memcheck:

1 #include <Kokkos_Core.hpp>
2 #include <cmath>
3
4 int main(int argc, char* argv[]) {

5 Kokkos::initialize(argc, argv);
6 {
7 void * ptr;
8 // This memory will leak
9 cudaMalloc(&ptr, 1024);

10 int N = argc > 1 ? atoi(argv[1]) : 1000000;
11 int R = argc > 2 ? atoi(argv[2]) : 10;
12 double result;
13 Kokkos::parallel_reduce(N, KOKKOS_LAMBDA(int i,

double& r) {
14 r+=i;
15 },result);
16 printf("%lf\n",result);
17 }
18 Kokkos::finalize();
19 }

cuda-memcheck reports:
1 CUDA-MEMCHECK version 11.6.124 ID:(46)
2 ========= CUDA-MEMCHECK
3 ========= ERROR SUMMARY: 0 errors

However, APEX will report it as a leak:
1 1024 bytes leaked at 0x1465937ea400 from task

cudaMalloc on tid 0 with backtrace:
2 gpu_device_malloc
3 addr=<0x1465fa0f409b> [{(unknown)} {0

x1465fa0f409b}]
4 addr=<0x1465fa0f43b7> [{(unknown)} {0

x1465fa0f43b7}]
5 addr=<0x1465fa0f6c1c> [{(unknown)} {0

x1465fa0f6c1c}]
6 addr=<0x1465fe5e3143> [{(unknown)} {0

x1465fe5e3143}]
7 addr=<0x1465fdfb247b> [{(unknown)} {0

x1465fdfb247b}]
8 main [{/home/khuck/polaris/test/test.cpp}

{10,0}]
9 __libc_start_main [{/lib64/libc-2.31.so} {0

x1465fb4e434d}]

3

10 _start [{/home/abuild/rpmbuild/BUILD/glibc
-2.31/csu/../sysdeps/x86_64/start.S} {122,0}]

The test was performed on Polaris, an HPE Cray system at
Argonne National Laboratory with AMD EPYC Milan proces-
sors and NVIDIA A100 GPUs and NVHPC 21.9 compilers1.
This APEX feature was also helpful in finding and reporting
a minor memory leak in Kokkos2.

E. Concurrency Tracking

Occasionally, it is useful to obtain a time-series view of
the profile data, usually to identify regions of low system
utilization. This view is also useful when validating policies
that modify OS behavior, like throttling threads to stay under
a soft power cap [1]. APEX provides a concurrency view with
the concurrency listener, which will periodically sample the
timer stack on all known OS threads. The samples are written
to a file at the end of execution, and post-processed with
Gnuplot. An example of the resulting stacked bar chart of
time-series samples is shown in Figure 3, sampled 200 times
per second for the Lulesh example running with 48 Kokkos
OpenMP threads (see Section V). The second y axis shows the
power measurement captured at the same time interval. This
example shows effective use of the available cores/threads with
little idle periods, although the initialization phase shows all
threads waiting at barriers while Kokkos Views are copied.

F. Profile Formats

APEX has native support for performance profiling, in
which all tasks scheduled by the runtime are measured and
a report is output to disk and/or the screen at the end of
execution. The profile data contains the number of times
each task was executed and the total time spent executing
that type of task. The profile data also contains all of the
sampled counters encountered during execution. Each process
maintains its own profile data, and writes a different output
file in various optional formats, including TAU profiles or CSV
files. Profile data is optionally reported to stdout at program
exit.

As described in section III-A, APEX can also capture
the task dependency relationships. The dependencies can be
captured as a graph or a tree, and the data can be stored as
a TAU call path profile, task dependency trees in ASCII text,
Graphviz Dot files, and Hatchet JSON files [22].

G. Trace Formats

In order to perform detailed performance analysis involving
synchronization and/or task dependency analysis, full event
traces including event identification and start/stop times have
to be captured. To that end, APEX is integrated with the Open
Trace Format 2 [23] (OTF2) library – an open, robust format
for large scale parallel application event trace data. OTF2 is a
robust reader/writer library and binary format specification that
is typically used for high-performance computing (HPC) trace
data. In order to capture full task dependency chains in HPX

1https://www.alcf.anl.gov/polaris
2https://github.com/kokkos/kokkos/issues/5269

applications, all tasks are uniquely identified by its GUID and
the GUID of its parent task. These GUIDs are captured as part
of the OTF2 trace output. OTF2 data can be visualized by the
Vampir [24] trace analysis tool or by Traveler [25]. To provide
another free, open source alternative for trace visualization
APEX can also write trace data in an informal JSON format
called the Google Trace Events Format [26], which can be
visualized in the web-based Perfetto [27] trace visualizer. The
format includes support for flow events, an event type that
crosses from one thread of execution to another, rather than
a functional parent-child relationship. Figure 4 shows zoomed
in regions of flow events. In this example, the HPX events
generated from a single Deep Copy are connected by virtue
of the task dependencies.

H. Scatterplots

Another time-series format that is useful for understanding
variability between task instances is to visualize how long
each task instance took with respect to when it was called.
Figures 5 and 6 show examples of task and counter scatter-
plots, respectively. At runtime, APEX captures a configurable
fraction of the tasks that are timed in the system (default: 1%),
recording both how long the task took and a timestamp. Task
scatterplots are helpful in understanding task distributions,
whether there are outliers, and whether the times change
as the simulation evolves. Counters are sampled whenever
the value is updated, whether synchronously or periodically.
Utilization, consumption and headroom counters are helpful in
understanding how a simulation evolves and helps to interpret
whether implemented runtime adaptation policies are having
the desired effect.

IV. SUPPORTED PROGRAMMING MODELS

A. POSIX and C++ Threads

Both C++ threads (std::thread, std::async) and
POSIX C threads can be measured by APEX us-
ing a pthread_create() function wrapper. By using
LD_PRELOAD, the wrapper replaces the underlying POSIX
thread functions and captures all spawned threads, mea-
suring the time spent in those top level functions. The
pthread_create() function wrapper wraps the target
function with a proxy function that measures its lifetime and
links the task dependency chain to the current task that called
pthread_create(). An example of this support is shown
in Figures 1 and 2.

B. OpenMP

OpenMP is a pragma based extension to Fortran, C, and
C++ to provide concurrent execution support on shared mem-
ory systems. Since version 5.0, The OpenMP specification has
included the OpenMP Tools interface, OMPT [28]. OMPT pro-
vides callbacks from the OpenMP runtime to a software tool to
track host-side parallel regions, loops, threads, tasks, synchro-
nization, teams, and target offload events. The specification
also includes support for providing a buffer of asynchronous
target maps and kernels that execute on OpenMP capable

4

https://www.alcf.anl.gov/polaris
https://github.com/kokkos/kokkos/issues/5269

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 1000 2000
 0

 50

 100

 150

 200

 250
C

on
cu

rr
en

cy

P
ow

er

Time

OpenMP Implicit Barrier Wait: ViewCopy
OpenMP Implicit Barrier Wait: ViewCopy

OpenMP Implicit Barrier Wait: LagrangeElements
OpenMP Implicit Barrier Wait: CalcHourglassControlForElems

OpenMP Implicit Task: CalcKinematicsForElems
OpenMP Implicit Task: LagrangeElements

OpenMP Implicit Task: CalcEnergyForElems
OpenMP Implicit Task: IntegrateStressForElems

OpenMP Implicit Task: CalcHourglassControlForElems
OpenMP Implicit Task: CalcFBHourglassForceForElems

other
power

Fig. 3. Concurrency view example of Lulesh-Kokkos running with the OpenMP back end. The samples were taken 200 times per second, and the y axis
indicates how many threads were executing each of the timer types when the sample was taken. The timer names have been shortened from the Kokkos
lambda template instantiations for brevity. The application was executed with 48 OpenMP threads, and a problem size of 256, and only the first 10 iterations.
The second y axis shows the power draw reported by RAPL during the interval, scaled to Watts per second. Due to irregularities in the power measurement,
some noisy spikes occur.

Fig. 4. Example of trace output data from hpx-kokkos/tests/executors_test executed with apex_exec --apex:gtrace --apex:kokkos
--apex:kokkos_fence ./tests/executors_test --hpx:threads 4. The flow events from the deep copy future are shown.

devices like GPUs. To date, several compiler vendors have
provided OMPT support in their runtimes including LLVM,
AMD, Intel, and IBM. Of these, only AMD has prototyped
the target offload OMPT support. APEX uses the provided
OMPT support to measure OpenMP activity on both the host
and any target offload devices. In addition to timing events,
APEX will capture how many bytes were transferred to/from
the device, allocated, and freed.

C. OpenACC
Like OpenMP, OpenACC is a pragma based extension to

Fortran, C and C++ to provide computational offload support
on heterogeneous systems with accelerated hardware like
GPUs. The OpenACC specification [29] includes support for
profiling callbacks so that tools can intercept the entry and exit
to OpenACC routines. At initialization, the tool registers itself

with the OpenACC runtime and provides function pointers to
be called when particular events happen on the host side. In
addition, some vendor back ends like CUDA also provide a
buffer of asynchronous offload events that executed on the
device, such as data maps to and from the device and kernel
executions. APEX provides support for both the host-side
events as well as the asynchronous device activity. Correlation
IDs are used to track the task dependencies between the task
that called an OpenACC region and the activity that was
executed on the device. For each kernel executed, APEX will
also capture the number of gangs, workers, and vector lanes
associated with the kernel. Like with OpenMP target offload,
APEX will capture how many bytes were transferred to/from
the device, allocated, and freed.

5

Fig. 5. Timer scatterplot examples from the Octo-Tiger simulation. In the
child_gravity_channels graph, it is clear that the time spent in that
task slowly increases over time. The Memcpy graph shows clear striations in
the times spent to transfer different data sizes to the GPU.

0 1 2 3 4 5 6 7 8
seconds from program start

0
2500000000
5000000000
7500000000

10000000000
12500000000
15000000000
17500000000

va
lu

e

GPU: Total Bytes Occupied on Device
locality 0
Mean: 14515161638.2

0 1 2 3 4 5 6 7 8
seconds from program start

0
20
40
60
80

100

va
lu

e

GPU: Device 0 Utilization %
locality 0
Mean: 79.2

Fig. 6. Counter scatterplot examples from the Kokkos Lulesh example
with the CUDA back end. The Total bytes counter is updated whenever a
CudaMalloc* or CudaFree function is called. The Device Utilization
graph is updated periodically and queried through the NVML library.

D. CUDA

Before the DCA++ work mentioned in section I, the first
person measurement in APEX was only integrated with the
technologies described to this point. The third person mea-
surement in APEX was mostly limited to extracting data
from HPX and the Linux /proc virtual filesystem. Because
most of the DCA++ computation is offloaded to GPUs using
the CUDA library, APEX was extended and integrated with
the CUDA Profiling Tools Interface (CUPTI) [30] and the
NVIDIA Management Library (NVML) [31]. Synchronous
CUDA API callback timers and some counters (e.g. bytes
transferred, bandwidth, vector lanes) from the CUDA run-
time and/or device API are captured synchronously, whereas
the NVML counters (e.g. utilization, bandwidth, power) are
periodically captured asynchronously. Using APEX GUIDs
mapped from CUDA correlation IDs, the GPU activity such
as memory transfers and kernel executions are captured and
linked to the host-side tasks that launched them. APEX also
supports the NVTX [32] instrumentation API. The CUDA
support has subsequently been used in other performance
studies such as [9], [10], [33].

E. HIP

With the advent of HPC systems based on AMD GPG-
PUs, and the anticipated ORNL Frontier exascale system,
HIP/ROCm support became a collaboration requirement.
APEX was integrated with the Rocprofiler and Roctracer Tools
Interface [34], [35] and the ROCm System Management
Interface (ROCm-SMI) [36]. Synchronous HIP API callback
timers and some counters (e.g. bytes transferred, bandwidth,
vector lanes) from the HIP runtime and/or device API are
captured synchronously, whereas the ROCm-SMI counters
(e.g. utilization, bandwidth, power) are periodically captured
asynchronously. Using APEX GUIDs mapped from HIP cor-
relation IDs, the GPU activity such as memory transfers and
kernel executions are captured and linked to the host-side tasks
that launched them. APEX also supports the ROCTX [32]
instrumentation API.

F. Kokkos and Raja

Both the Kokkos [37]–[39] and Raja [40] performance
portability models include a mechanism for profiling tool
integration and support, and APEX provides support for both
of them. In the case of Kokkos, it provides a cross-platform
suite of programming hooks that are consistent regardless of
the selected back end. Kokkos currently provides back end
support for CUDA, HIP, SYCL, HPX, OpenMP and C++
threads. Because APEX already supports most of those back
ends, it was a straightforward exercise to provide Kokkos
profiling support through APEX. In addition, Kokkos has an
experimental runtime adaptation interface that can be used to
runtime tune RangePolicy and TeamPolicy parameters associ-
ated with kernel launch, but only for some back ends. That
functionality is still experimental, however it is a natural fit for
the Policy Engine support in APEX. We have prototyped some
experiments with that interface but have not yet converged on
an effective approach.

V. SAMPLE EXPERIMENT WITH KOKKOS

To demonstrate the portable performance measurement
available with APEX, we built and ran the Lulesh Kokkos
miniapp3. We built versions with OpenMP, HPX, CUDA and
HIP back ends, all on Gilgamesh, a development server at
OACISS4. Gilgamesh has two 24-core Epyc Milan 7413 @
2.6GHz CPUs, two AMD MI210 GPUs, and one NVIDIA
A100 GPU. With this system, we can demonstrate perfor-
mance measurement results for the HPX, OpenMP, HIP and
CUDA back ends.

The tests were all performed with the apex_exec wrapper
script which preloads the APEX library and sets any necessary
environment variables to enable measurement support for
Kokkos, HIP, CUDA, or OpenMP. For example, the following
command would execute the HIP implementation with HIP
support enabled, scatterplot, CSV, and tracing output, GPU
monitoring and a monitoring period of 5ms:

3https://github.com/kokkos/kokkos-miniapps
4https://systems.nic.uoregon.edu/internal-wiki/index.php?title=Category:

Servers

6

https://github.com/kokkos/kokkos-miniapps
https://systems.nic.uoregon.edu/internal-wiki/index.php?title=Category:Servers
https://systems.nic.uoregon.edu/internal-wiki/index.php?title=Category:Servers

Fig. 7. CUDA, HIP, OpenMP, and HPX back end execution traces of Lulesh-Kokkos. The CUPTI (CUDA) implementation, top, provides asynchronous
activity for synchronization events, which APEX segregates to a different stream than for kernel and memory transfer activity. The Roctracer (HIP) events,
top middle, are similar, however it only provides synchronization events on the host side. The OMPT (OpenMP) and HPX traces, bottom, show only 4 of the
48 threads each for brevity. All four traces capture the Kokkos profiling callback events on the host side.

apex_exec --apex:kokkos_fence --apex:scatter --apex:
csv --apex:tasktree --apex:hip --apex:gtrace --
apex:monitor_gpu --apex:period 5000 lulesh.hip -
s 256

Figure 7 shows Perfetto traces of one phase of the proxy
app, a sequence of Kokkos parallel_for loops performing
the CalcMonotonicQRegionForElems operation. In all
cases, the Kokkos profiling callback events are shown, anno-
tated with the device type and index on which it was executed.
Although not shown, there are flow events that link the
cudaLaunchKernel / hipLaunchKernel events with
the kernels on the GPU. For the CUDA case, there are flow
events that link the synchronization requests on the host with
synchronization events on the device. In the OpenMP example
there are flow events that link the parallel region with the
implicit tasks that execute the work on each of the threads
in the team. In the HPX example, there are flow events that
link the Kokkos region with all of the tasks launched to
complete the region. While obviously not a fair comparison,
the CUDA and HIP back ends are predictably much faster
than the OpenMP and HPX back ends that execute on the
CPU. However, even though each back end implementation is
significantly different, APEX provides the ability to compare
the performance of each implementation with the same set of
data collection and analysis tools.

VI. CONCLUSION AND FUTURE WORK

In this paper, we’ve reviewed the latest capabilities and
support in APEX that have been added since the initial
APEX publication. This new support includes updated tracing

capabilities, heterogeneous hardware support for CUDA and
HIP, performance portability support for OpenACC, OpenMP,
Kokkos and Raja, and support for capturing and visualizing
task dependencies within large asynchronous applications.
Future work for APEX includes adding broader power and
energy measurement support with PowerAPI5, which would
provide a more portable approach instead of multiple code
paths for MSR events, Powercap and RAPL. APEX also
has prototyped support for Intel Level0/OneAPI and StarPU
programming models, but has not yet been thoroughly tested
and integrated. We also hope to replace/augment the current
JSON trace output with the native Perfetto trace library, which
would provide a more compact data representation and lower
overhead while buffering and streaming traces out to disk.
Finally, we plan to further develop and improve the runtime
adaptation support for Kokkos kernels.

REFERENCES

[1] K. A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A. D.
Malony, T. Sterling, and R. Fowler, “An autonomic performance
environment for exascale,” Supercomputing Frontiers and Innovations,
vol. 2, no. 3, p. 49–66, Nov. 2015. [Online]. Available: https:
//superfri.org/index.php/superfri/article/view/64

[2] C. Tapus, I.-H. Chung, and J. K. Hollingsworth, “Active harmony:
Towards automated performance tuning,” in SC’02: Proceedings of the
2002 ACM/IEEE Conference on Supercomputing. IEEE, 2002, pp. 44–
44.

[3] H. Kaiser, P. Diehl, A. S. Lemoine, B. A. Lelbach, P. Amini, A. Berge,
J. Biddiscombe, S. R. Brandt, N. Gupta, T. Heller, K. Huck, Z. Khatami,
A. Kheirkhahan, A. Reverdell, S. Shirzad, M. Simberg, B. Wagle,
W. Wei, and T. Zhang, “HPX - The C++ Standard Library for Parallelism

5http://powerapi.org

7

https://superfri.org/index.php/superfri/article/view/64
https://superfri.org/index.php/superfri/article/view/64
http://powerapi.org

and Concurrency,” Journal of Open Source Software, vol. 5, no. 53, p.
2352, 2020.

[4] H. Kaiser, M. Simberg, B. Adelstein Lelbach, T. Heller, A. Berge,
J. Biddiscombe, A. Reverdell, A. Bikineev, G. Mercer, A. Schaefer,
K. Huck, A. Lemoine, T. Kwon, J. Habraken, M. Anderson, S. Brandt,
M. Copik, S. Yadav, M. Stumpf, D. Bourgeois, A. Nair, D. Blank,
G. Gonidelis, R. Stobaugh, N. Gupta, S. Jakobovits, V. Amatya,
L. Viklund, P. Diehl, and Z. Khatami, “STEllAR-GROUP/hpx: HPX
V1.8.1: The C++ Standards Library for Parallelism and Concurrency,”
Jul. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.598202

[5] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX:
A Task Based Programming Model in a Global Address Space,” in
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models, ser. PGAS ’14. ACM, 2014, pp.
6:1–6:11.

[6] H. Kaiser, T. Heller, D. Bourgeois, and D. Fey, “Higher-level paralleliza-
tion for local and distributed asynchronous task-based programming,”
in Proceedings of the First International Workshop on Extreme Scale
Programming Models and Middleware, ser. ESPM ’15. New York,
NY, USA: ACM, 2015, pp. 29–37.

[7] T. Heller, H. Kaiser, P. Diehl, D. Fey, and M. A. Schweitzer, “Closing the
Performance Gap with Modern C++,” in High Performance Computing,
ser. Lecture Notes in Computer Science, M. Taufer, B. Mohr, and J. M.
Kunkel, Eds., vol. 9945. Springer International Publishing, 2016, pp.
18–31.

[8] G. Daiß, P. Amini, J. Biddiscombe, P. Diehl, J. Frank, K. Huck,
H. Kaiser, D. Marcello, D. Pfander, and D. Pfüger, “From piz daint to
the stars: Simulation of stellar mergers using high-level abstractions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356221

[9] P. Diehl, G. Daiß, D. Marcello, K. Huck, S. Shiber, H. Kaiser, J. Frank,
G. C. Clayton, and D. Pflüger, “Octo-tiger’s new hydro module and
performance using hpx+ cuda on ornl’s summit,” in 2021 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). IEEE, 2021,
pp. 204–214.

[10] P. Diehl, D. Marcello, P. Amini, H. Kaiser, S. Shiber, G. C. Clayton,
J. Frank, G. Daiß, D. Pflüger, D. Eder et al., “Performance measurements
within asynchronous task-based runtime systems: A double white dwarf
merger as an application,” Computing in Science & Engineering, vol. 23,
no. 3, pp. 73–81, 2021.

[11] W. Wei, A. Chatterjee, K. Huck, O. Hernandez, and H. Kaiser, “Per-
formance analysis of a quantum monte carlo application on multiple
hardware architectures using the hpx runtime,” in 2020 IEEE/ACM 11th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (ScalA). IEEE, 2020, pp. 77–84.

[12] S. Shende and A. D. Malony, “The TAU Parallel Performance System,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–331, Summer 2006.

[13] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “Hpctoolkit: tools for performance analysis
of optimized parallel programs http://hpctoolkit.org,” Concurr. Comput.
: Pract. Exper., vol. 22, pp. 685–701, April 2010.

[14] A. Knüpfer, C. Rössel, S. Biersdorff, K. Diethelm, D. Eschweiler,
M. Geimer, M. Gerndt, D. Lorenz, A. Malony, W. E. Nagel et al.,
“Score-p: A joint performance measurement run-time infrastructure for
periscope, scalasca, tau, and vampir,” in Tools for High Performance
Computing 2011. Springer, 2012, pp. 79–91.

[15] F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker, W. Frings, K. Furlinger,
M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and
Z. Szebenyi, “Usage of the scalasca toolset for scalable performance
analysis of large-scale parallel applications,” in Tools for High Perfor-
mance Computing. Springer Berlin Heidelberg, 2008, pp. 157–167.

[16] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to
visualize and analyze parallel code,” in Proceedings of WoTUG-18:
Transputer and occam Developments, vol. 44. mar, 1995, pp. 17–31.

[17] D. Boehme, T. Gamblin, D. Beckingsale, P.-T. Bremer, A. Gimenez,
M. LeGendre, O. Pearce, and M. Schulz, “Caliper: performance in-
trospection for hpc software stacks,” in SC’16: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2016, pp. 550–560.

[18] J. R. Madsen, M. G. Awan, H. Brunie, J. Deslippe, R. Gayatri, L. Oliker,
Y. Wang, C. Yang, and S. Williams, “Timemory: modular performance

analysis for hpc,” in International Conference on High Performance
Computing. Springer, 2020, pp. 434–452.

[19] T. Sterling, D. Kogler, M. Anderson, and M. Brodowicz, “Slower: A
performance model for exascale computing,” Supercomputing frontiers
and innovations, vol. 1, no. 2, pp. 42–57, 2014.

[20] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with papi-c,” in Tools for High Performance Computing
2009. Springer, 2010, pp. 157–173.

[21] “CUDA Toolkit Documentation,” August 2022. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-memcheck/index.html

[22] A. Bhatele, S. Brink, and T. Gamblin, “Hatchet: pruning the overgrowth
in parallel profiles,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp. 1–21.

[23] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E. Nagel, and
F. Wolf, “Open trace format 2: The next generation of scalable trace
formats and support libraries,” in Applications, Tools and Techniques on
the Road to Exascale Computing. IOS Press, 2012, pp. 481–490.

[24] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel, “The Vampir performance analysis tool-
set,” in Tools for High Performance Computing. Springer, 2008, pp.
139–155.

[25] S. A. Sakin, A. Bigelow, R. Tohid, C. Scully-Allison, C. Scheidegger,
S. R. Brandt, C. Taylor, K. A. Huck, H. Kaiser, and K. E. Isaacs,
“Traveler: Navigating task parallel traces for performance analysis,” in
IEEE TVCG Proceedings of IEEE VIS. IEEE, 2023, to appear.

[26] Google, “Trace Events Format,” August 2022.
[Online]. Available: https://docs.google.com/document/d/
1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU

[27] “Perfetto,” August 2022. [Online]. Available: https://perfetto.dev
[28] OpenMP. (2022) Openmp specifications. [Online]. Available: https:

//www.openmp.org/specifications/
[29] OpenACC. (2022) Openacc specifications. [Online]. Available: https:

//www.openacc.org/specification
[30] “CUDA Profiling Tools Interface,” August 2020. [Online]. Available:

https://docs.nvidia.com/cupti/Cupti/index.html
[31] “NVIDIA Management Library,” August 2020. [Online]. Available:

https://developer.nvidia.com/nvidia-management-library-nvml
[32] “NVIDIA Tools Extension Library,” August 2020. [Online].

Available: https://docs.nvidia.com/nsight-visual-studio-edition/2020.1/
nvtx/index.html

[33] W. Wei, E. D’Azevedo, K. Huck, A. Chatterjee, O. Hernandez, and
H. Kaiser, “Memory reduction using a ring abstraction over gpu rdma for
distributed quantum monte carlo solver,” in Proceedings of the Platform
for Advanced Scientific Computing Conference, 2021, pp. 1–9.

[34] “ROC-Profiler Library,” August 2022. [Online]. Available: https:
//github.com/ROCm-Developer-Tools/rocprofiler

[35] “ROC-Tracer Library,” August 2022. [Online]. Available: https:
//github.com/ROCm-Developer-Tools/roctracer

[36] “ROCm System Management Interface,” August 2022. [Online].
Available: https://github.com/RadeonOpenCompute/rocm smi lib

[37] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731514001257

[38] C. Trott, L. Berger-Vergiat, D. Poliakoff, S. Rajamanickam, D. Lebrun-
Grandie, J. Madsen, N. Al Awar, M. Gligoric, G. Shipman, and G. Wom-
eldorff, “The kokkos ecosystem: Comprehensive performance portability
for high performance computing,” Computing in Science Engineering,
vol. 23, no. 5, pp. 10–18, 2021.

[39] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Mad-
sen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg,
D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.

[40] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. Scogland,
“Raja: Portable performance for large-scale scientific applications,” in
2019 ieee/acm international workshop on performance, portability and
productivity in hpc (p3hpc). IEEE, 2019, pp. 71–81.

8

https://doi.org/10.5281/zenodo.598202
https://doi.org/10.1145/3295500.3356221
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU
https://perfetto.dev
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://www.openacc.org/specification
https://www.openacc.org/specification
https://docs.nvidia.com/cupti/Cupti/index.html
https://developer.nvidia.com/nvidia-management-library-nvml
https://docs.nvidia.com/nsight-visual-studio-edition/2020.1/nvtx/index.html
https://docs.nvidia.com/nsight-visual-studio-edition/2020.1/nvtx/index.html
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/roctracer
https://github.com/ROCm-Developer-Tools/roctracer
https://github.com/RadeonOpenCompute/rocm_smi_lib
http://www.sciencedirect.com/science/article/pii/S0743731514001257

1

I. ARTIFACT DESCRIPTION APPENDIX: [BROAD
PERFORMANCE MEASUREMENT SUPPORT FOR

ASYNCHRONOUS MULTI-TASKING WITH APEX]

A. Abstract

This description contains the information needed to launch
some experiments of the ESPM22 paper “Broad Performance
Measurement Support for Asynchronous Multi-Tasking with
APEX”. In this appendix, we explain how to compile and run
the modified APEX examples used in section VI. Examples
from throughout the paper are also explained.

B. Description
1) Check-list (artifact meta information):
• Program: C++ binaries, C and C++ libraries.
• Compilation: Varies by platform, hipcc 5.2.0 for AMD GPUs,

NVHPC 22.5 for NVIDIA GPUs, LLVM 14 otherwise. Cmake
3.22.1 with CMAKE_BUILD_TYPE=Release.

• Run-time environment: Linux 4.18.0-372.9.1.el8.x86 64
• Hardware: Server with AMD EPYC 7413 24-Core Processor,

NVIDIA A100 GPU, AMD MI210 GPU.
• Experiment workflow: Download source, configure depen-

dencies, build dependencies, build APEX, build Lulesh with
Kokkos implementation.

• Publicly available?: Yes.

2) How software can be obtained (if available):
• APEX:

https://github.com/UO-OACISS/apex
• HPX:

https://github.com/STEllAR-GROUP/hpx
• Kokkos:

https://github.com/kokkos/kokkos
• Lulesh with Kokkos:

https://github.com/kokkos/kokkos-miniapps
• HWLOC:

https://www.open-mpi.org/software/hwloc/v2.8/
• Complete build instructions and scripts are available

at:
https://github.com/khuck/publication-artifacts/tree/main/
2022-ESPM

3) Hardware dependencies: None.
4) Software dependencies: HPX examples require a mod-

ern C++ compiler supporting C++17 or newer. AMD GPU
support requires hipcc 4.5 or newer. NVIDIA GPU support
requires CUDA 10 or newer, and/or NVHPC compilers.

5) Datasets: None.

C. Installation

1) Set up the build environment by sourcing the
sourceme.sh script in the build instructions.

2) Get the source by running the getsrc.sh script in the
build instructions.

3) Build the APEX CUDA configuration by running the
apex-cuda.sh script in the build instructions.

4) Build the APEX HIP configuration by running the
apex-hip.sh script in the build instructions.

5) Build the APEX OpenMP configuration by running the
apex-openmp.sh script in the build instructions.

6) Build HPX by running the hpx.sh script in the build
instructions.

7) Build Lulesh-Kokkos with CUDA back end by running
the lulesh-cuda.sh script in the build instructions.

8) Build Lulesh-Kokkos with HIP back end by running the
lulesh-hip.sh script in the build instructions.

9) Build Lulesh-Kokkos with HPX back end by running
the lulesh-hpx.sh script in the build instructions.

10) Build Lulesh-Kokkos with OpenMP back end by run-
ning the lulesh-openmp.sh script in the build in-
structions.

D. Experiment workflow

Run Lulesh-Kokkos with CUDA back end:

1 export OMP_PROC_BIND=spread
2 export OMP_PLACES=threads
3 export OMP_NUM_THREADS=48
4 export KOKKOS_NUM_THREADS=${OMP_NUM_THREADS}
5

6 ${installdir}/apex-cuda/bin/apex_exec \
7 --apex:kokkos --apex:csv --apex:tasktree --apex:cuda

--apex:gtrace --apex:monitor_gpu --apex:period
5000 \

8 ${builddir}/lulesh-cuda/lulesh.cuda -s 256

Run Lulesh-Kokkos with HIP back end:

1 export OMP_PROC_BIND=spread
2 export OMP_PLACES=threads
3 export OMP_NUM_THREADS=48
4 export KOKKOS_NUM_THREADS=${OMP_NUM_THREADS}
5

6 ${installdir}/apex-hip/bin/apex_exec \
7 --apex:kokkos --apex:csv --apex:tasktree --apex:hip

--apex:gtrace --apex:monitor_gpu --apex:period
5000 \

8 ${builddir}/lulesh-hip/lulesh.hip -s 256

Run Lulesh-Kokkos with HPX back end:

1 export OMP_NUM_THREADS=48
2 export KOKKOS_NUM_THREADS=${OMP_NUM_THREADS}
3 export LD_LIBRARY_PATH=${installdir}/hpx/lib64:/usr/

local/packages/boost/1.75.0/lib
4

5 export APEX_SCREEN_OUTPUT=1
6 ${builddir}/lulesh-hpx/lulesh.host

Run Lulesh-Kokkos with OpenMP back end:

1 export OMP_PROC_BIND=spread
2 export OMP_PLACES=threads
3 export OMP_NUM_THREADS=24
4 export KOKKOS_NUM_THREADS=${OMP_NUM_THREADS}
5 export APEX_MEASURE_CONCURRENCY=1
6 #export APEX_MEASURE_CONCURRENCY_PERIOD=500000
7

8 ${installdir}/apex-openmp/bin/apex_exec \
9 --apex:kokkos --apex:csv --apex:tasktree --apex:ompt

--apex:ompt_details \
10 ${builddir}/lulesh-openmp/lulesh.host -s 64 -p -i

200

E. Evaluation and expected result

Lulesh should run to completion in all cases, and APEX
should provide results similar to those presented in the paper.

2

F. Experiment customization

In order to allow the command line of make to
override the values in the Lulesh makefiles, the files
kokkos-miniapps/lulesh-2.0/kokkos-*/Makefile*
had to be changed from (for example):

1 KOKKOS_PATH = ${HOME}/Kokkos/kokkos
2 KOKKOS_DEVICES = "Cuda,OpenMP"
3 KOKKOS_ARCH = "Volta70"
4 KOKKOS_CUDA_OPTIONS = force_uvm,enable_lambda

to:
1 KOKKOS_PATH := ${HOME}/Kokkos/kokkos
2 KOKKOS_DEVICES := "Cuda,OpenMP"
3 KOKKOS_ARCH := "Volta70"
4 KOKKOS_CUDA_OPTIONS := force_uvm,enable_lambda

G. Notes

Complete build instructions and scripts are available
at: https://github.com/khuck/publication-artifacts/tree/main/
2022-ESPM

	Introduction
	Related
	Measurement Capabilities
	Task Dependencies
	Hardware Counters
	GPU Metrics
	GPU Memory Tracking
	Concurrency Tracking
	Profile Formats
	Trace Formats
	Scatterplots

	Supported Programming Models
	POSIX and C++ Threads
	OpenMP
	OpenACC
	CUDA
	HIP
	Kokkos and Raja

	Sample Experiment with Kokkos
	Conclusion and Future Work
	References

