ZeroSum: User Space Utility for Monitoring
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High Performance Computing (HPC) systems are large, heterogeneous, sophisticated — and are
R therefore so complicated that they are difficult to use efficiently. HPC users are allocated finite
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Cores assigned to utilizing the allocation at their disposal.
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Below: Telemetry data is captured as time series data and can be post-processed to visualize
changes over time — and visualize variability between threads, ranks or nodes. These sparklines

Resource ) show a collection of GPU monitoring data from a 64 rank MPI job utilizing one AMD MI250X GCD
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The tree is post-processed with Python scripts and merged with telemetry data from
each process and compute node monitored by ZeroSum. The data is mapped to the o= i . o o

400 7 0.25-0.75q 0.25-0.75q 0.25-0.75q

resource topology and rendered as an interactive sunburst plot and presented to the n

user as a single HTML page. Users can quickly visualize which resources were
mapped to each process executing on each node. B A “
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This figure shows a merged callgraph that is captured when ZeroSum automatically
detects that a deadlock has occurred. When monitoring for deadlock, the application is
executed in gdb (or a variant) in batch mode, scripting each process to collect a unique
gdb log. When deadlocked, the application is aborted and gdb collects a backtrace of all

running processes. This figure and zoomed inset shows a 512 rank MPI job on
Perlmutter that deadlocked due to a programming bug causing divergent stacks.
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These two figures show two process mapping These two figures show a possible slurm misconfiguration on the Frontier system at ORNL.

strategies on the Sunspot system at ANL. On % On the left, eight processes of seven threads each are mapped to the eight L3 cache
the left, the script assumed one thread per regions of the node using two hardware threads per core, and one AMD MI250X GCD per
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_core, and assigned processes to consecutive a1 process. Unfortunately, one of the processes is spread across seven of the eight cache
i hardware thread IDs. regions, none of which are physically located with its GCD. On the right, the application is
st launched with one hardware thread per core, and slurm maps the processes correctly.
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