
The Case for a Common Instrumentation
Interface for HPC Codes

David Boehme, Kevin Huck,
Jonathan R. Madsen, Josef Weidendorfer

boehme3@llnl.gov, khuck@cs.uoregon.edu,
jrmadsen@lbl.gov, Josef.Weidendorfer@lrz.de

mailto:boehme3@llnl.gov
mailto:khuck@cs.uoregon.edu
mailto:jrmadsen@lbl.gov
mailto:Josef.Weidendorfer@lrz.de

Instrumentation Reality (everyone does it)
Runtime behavior of production runs is a black box without it
• Explicit, targeted instrumentation allows for

– Low overhead, always-active notifications about runtime behavior
• Exposing internal timer data is helpful for

– Light-weight profiling (report-on-exit)
– Interactive bottleneck analysis (by users/sites)
– Monitoring for regressions due to toolchain/source changes
– Dynamic tuning in runtimes / system tools

• Many/most/all applications already have some
instrumentation - but mostly one-off implementations

• A common, agreed-on interface could benefit everybody
ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019 2

● Caliper
● TiMemory
● PerfStubs
● GOTCHA
● TAU
● Score-P
● -finstrument-functions
● Others...

Several potential examples

3

Targeted instrumentation:
• Granularity control
• Explicit interpretation
• Reproducibility
• Robustness
But adding a tool to a build
can be...frustrating

ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

Always-On Instrumentation Interfaces

4ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

Caliper
• Performance Analysis

Toolbox in a Library
– Instrumentation API
– Measurement config API

• Supports lightweight always-
on profiling and detailed
performance debugging

• Configuration at runtime via
API or environment

https://github.com/LLNL/Caliper

5

int main(int argc, char* argv[])

{

cali::ConfigManager mgr;

mgr.add("runtime-report");

mgr.start();

CALI_MARK_FUNCTION_BEGIN;

CALI_CXX_MARK_LOOP_BEGIN(mainloop, "main loop");

for (int i = 0; i < count; ++i) {

CALI_CXX_MARK_LOOP_ITERATION(mainloop, i);

t += foo(i);

}

CALI_CXX_MARK_LOOP_END(mainloop);

CALI_MARK_FUNCTION_END;

mgr.flush();

}

ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

https://github.com/LLNL/Caliper

TiMemory
• Arbitrarily-composable, type-safe C++

API
– C and Python bindings

• Users can write their own fully
integratable measurement or analysis
tools
– Can store data of any type and

reprocess data to any other type
• Select tools at compile-time or run-

time
• Single handler for multiple tools

auto_tuple<real_clock, cpu_roofline<double>>;

6

• No nesting restrictions
– Start/stop in any order w/o artifacts
– Geant4 attaches timers to particle

objects
• Template interface simplifies GOTCHA

generation to a single LOC
– Extracts return type and args
– Mangler for non-templated C++

functions
– Inspect incoming arguments before

function call and result before
returning

TIMEMORY_C_GOTCHA(tool, idx, MPI_Allreduce);

ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

https://github.com/NERSC/timemory

https://github.com/NERSC/timemory

TiMemory

Sample Components

7

• wall_clock

• cpu_clock

• peak_rss

• gperf_cpu_profiler

• caliper

• nvtx_marker

• cupti_activity

• cupti_counters

• cpu_roofline<Types…>

– e.g. cpu_roofline<double>

• gpu_roofline<Types…>

– e.g. gpu_roofline<half2, float>

Sample Bundles
• type A = component_tuple<wall_clock, peak_rss>;

• type B = component_list<caliper, nvtx_marker>;

• type C = component_list<B, gpu_roofline<float>>;

• type D = auto_hybrid<A, C>;

• D obj;

– obj.mark_begin(cudaStream_t);

– obj.get<wall_clock>();

• Get reference to individual tool

– storage<wall_clock>::instance()->get();

• Get entire call-stack

ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

8

TiMemory instrumentation examples

ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

PerfStubs
● Thin, stubbed-out, “adapter” interface for instrumentation
● The library doesn’t do any measurement
● Uses dlsym() or weak/strong symbol replacement to

discover timer library implementation symbols
○ If found, sets function pointers to perform measurement

● Could be implemented as observer pattern but currently
only allows 1 tool to implement the API

● Used with Alpine/Ascent, PETSc, PapyrusKV, proxy/demo
applications, will use with ADIOS2

● C/C++ and Fortran macros

9ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

https://github.com/khuck/perfstubs

https://github.com/khuck/perfstubs

PerfStubs Example

ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019 10

Potential use cases for common API:
• Performance regression testing / CI
• On-site application / library support
• Refactoring efforts
• 1st step in performance diagnosis
• Application/system monitoring
• Phase announcement (not detection) for energy saving

strategies
• Feedback/control systems (assumes reconfigurable app)
• Startup tool discovery, instantiation
• Dynamic instantiation?

ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019 11

An Instrumentation Adapter Interface
• Should provide notification about

– region enter/exit events
– custom execution contexts / metrics (simulated years per day)
– Metadata?

• Versioning / query for support of optional capabilities
– enables extensibility / adaptation to custom use-cases

• Selective disabling of instrumentation points
– enables methods for overhead control

• Multiplexing to multiple tools
• Back-channels from tool to application

– enables feedback / setting application tuning parameters

12ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

An Instrumentation Adapter Interface

13ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

Instrumentation Evaluation Benchmark
• https://github.com/NERSC/instrumentation-benchmark

– Suite of benchmark problems
• Matrix multiplication in C and C++
• Fibonacci calculation in C++

– Generic specification of an instrumentation API
• E.g. INSTRUMENT_CREATE(...)
• Generates Python bindings for each benchmark problem per-

API and makes them accessible as submodules
• Python scripts to loop over all submodules, run benchmarks,

generate statistics on overhead, and plot
– Facilitate development of a front-end API
– Facilitate research into optimal balance of flexibility and performance

14ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

https://github.com/NERSC/instrumentation-benchmark

Conclusion
● Need for common, high-level, runtime-available,

context-aware application/library instrumentation
● Many applications/libraries already instrument
● Some implementations exist, can we figure out a high-

level interface for pulling in useful tools?
● How much abstraction needed? 3 levels? 2?
● Project to evaluate solution(s) for quality, overhead

○ https://github.com/NERSC/instrumentation-benchmark
● Contact us!

15ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

https://github.com/NERSC/instrumentation-benchmark

Acknowledgements
This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Berkeley National Laboratory under contract DE-AC02-
05CH11231 and Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. This research is based upon work supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced Computing
(SciDAC) program under Award Number DE-AC05-00OR00725, subcontract
4000159855, and used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-05CH11231. LLNL-CONF-
792721.

16ProTools2019 : The Case for a Common Instrumentation Interface for HPC Codes : 17 November 2019

