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Instrumentation Reality (everyone does it)
Runtime behavior of production runs is a black box without it
• Explicit, targeted instrumentation allows for

– Low overhead, always-active notifications about runtime behavior
• Exposing internal timer data is helpful for

– Light-weight profiling (report-on-exit)
– Interactive bottleneck analysis (by users/sites)
– Monitoring for regressions due to toolchain/source changes
– Dynamic tuning in runtimes / system tools

• Many/most/all applications already have some 
instrumentation - but mostly one-off implementations

• A common, agreed-on interface could benefit everybody
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● Caliper
● TiMemory
● PerfStubs
● GOTCHA
● TAU
● Score-P
● -finstrument-functions
● Others...

Several potential examples
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Targeted instrumentation:
• Granularity control
• Explicit interpretation
• Reproducibility
• Robustness
But adding a tool to a build 
can be...frustrating
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Always-On Instrumentation Interfaces
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Caliper
• Performance Analysis 

Toolbox in a Library
– Instrumentation API
– Measurement config API

• Supports lightweight always-
on profiling and detailed 
performance debugging

• Configuration at runtime via 
API or environment

https://github.com/LLNL/Caliper
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int main(int argc, char* argv[])

{

cali::ConfigManager mgr;

mgr.add("runtime-report");

mgr.start();

CALI_MARK_FUNCTION_BEGIN;

CALI_CXX_MARK_LOOP_BEGIN(mainloop, "main loop");

for (int i = 0; i < count; ++i) {

CALI_CXX_MARK_LOOP_ITERATION(mainloop, i);

t += foo(i);

}

CALI_CXX_MARK_LOOP_END(mainloop);

CALI_MARK_FUNCTION_END;

mgr.flush();

}
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TiMemory
• Arbitrarily-composable, type-safe C++

API
– C and Python bindings

• Users can write their own fully
integratable measurement or analysis
tools
– Can store data of any type and

reprocess data to any other type
• Select tools at compile-time or run-

time
• Single handler for multiple tools

auto_tuple<real_clock, cpu_roofline<double>>;
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• No nesting restrictions
– Start/stop in any order w/o artifacts
– Geant4 attaches timers to particle 

objects 
• Template interface simplifies GOTCHA 

generation to a single LOC
– Extracts return type and args
– Mangler for non-templated C++ 

functions
– Inspect incoming arguments before 

function call and result before 
returning

TIMEMORY_C_GOTCHA(tool, idx, MPI_Allreduce);
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TiMemory

Sample Components
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• wall_clock

• cpu_clock

• peak_rss

• gperf_cpu_profiler

• caliper

• nvtx_marker

• cupti_activity

• cupti_counters

• cpu_roofline<Types…>

– e.g. cpu_roofline<double>

• gpu_roofline<Types…>

– e.g. gpu_roofline<half2, float>

Sample Bundles
• type A = component_tuple<wall_clock, peak_rss>;

• type B = component_list<caliper, nvtx_marker>;

• type C = component_list<B, gpu_roofline<float>>;

• type D = auto_hybrid<A, C>;

• D obj; 

– obj.mark_begin(cudaStream_t);

– obj.get<wall_clock>(); 

• Get reference to individual tool

– storage<wall_clock>::instance()->get();

• Get entire call-stack
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TiMemory instrumentation examples
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PerfStubs
● Thin, stubbed-out, “adapter” interface for instrumentation
● The library doesn’t do any measurement
● Uses dlsym() or weak/strong symbol replacement to 

discover timer library implementation symbols
○ If found, sets function pointers to perform measurement

● Could be implemented as observer pattern but currently 
only allows 1 tool to implement the API

● Used with Alpine/Ascent, PETSc, PapyrusKV, proxy/demo 
applications, will use with ADIOS2

● C/C++ and Fortran macros
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https://github.com/khuck/perfstubs
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PerfStubs Example
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Potential use cases for common API:
• Performance regression testing / CI
• On-site application / library support
• Refactoring efforts
• 1st step in performance diagnosis
• Application/system monitoring
• Phase announcement (not detection) for energy saving 

strategies
• Feedback/control systems (assumes reconfigurable app)
• Startup tool discovery, instantiation
• Dynamic instantiation? 
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An Instrumentation Adapter Interface
• Should provide notification about

– region enter/exit events
– custom execution contexts / metrics (simulated years per day)
– Metadata?

• Versioning / query for support of optional capabilities
– enables extensibility /  adaptation to custom use-cases

• Selective disabling of instrumentation points
– enables methods for overhead control

• Multiplexing to multiple tools
• Back-channels from tool to application

– enables feedback / setting application tuning parameters 
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An Instrumentation Adapter Interface
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Instrumentation Evaluation Benchmark
• https://github.com/NERSC/instrumentation-benchmark

– Suite of benchmark problems
• Matrix multiplication in C and C++
• Fibonacci calculation in C++

– Generic specification of an instrumentation API
• E.g. INSTRUMENT_CREATE(...)
• Generates Python bindings for each benchmark problem per-

API and makes them accessible as submodules
• Python scripts to loop over all submodules, run benchmarks, 

generate statistics on overhead, and plot
– Facilitate development of a front-end API
– Facilitate research into optimal balance of flexibility and performance
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Conclusion
● Need for common, high-level, runtime-available, 

context-aware application/library instrumentation
● Many applications/libraries already instrument
● Some implementations exist, can we figure out a high-

level interface for pulling in useful tools?
● How much abstraction needed? 3 levels? 2?
● Project to evaluate solution(s) for quality, overhead

○ https://github.com/NERSC/instrumentation-benchmark
● Contact us!
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