
An Autonomic Performance Environment for Exascale

Kevin A. Huck1, Allan Porterfield2, Nick Chaimov1, Hartmut Kaiser3,

Allen D. Malony1, Thomas Sterling4, Rob Fowler2

Exascale systems will require new approaches to performance observation, analysis, and

runtime decision-making to optimize for performance and efficiency. The standard “first-person”

model, in which multiple operating system processes and threads observe themselves and record

first-person performance profiles or traces for offline analysis, is not adequate to observe and

capture interactions at shared resources in highly concurrent, dynamic systems. Further, it does not

support mechanisms for runtime adaptation. Our approach, called APEX (Autonomic Performance

Environment for eXascale), provides mechanisms for sharing information among the layers of the

software stack, including hardware, operating and runtime systems, and application code, both new

and legacy. The performance measurement components share information across layers, merging

first-person data sets with information collected by third-person tools observing shared hardware

and software states at node- and global-levels. Critically, APEX provides a policy engine designed

to guide runtime adaptation mechanisms to make algorithmic changes, re-allocate resources, or

change scheduling rules when appropriate conditions occur. Keywords: ParalleX, exascale, adaptive

runtimes.

1. Introduction

The transition to extreme-scale computing poses new challenges in performance analysis

and optimization because of the anticipated high concurrency and dynamic operation that will

be required to make extreme scale systems operate efficiently. Increasingly heterogeneous hard-

ware, deeper memory hierarchies, reliability concerns, and constraints posed by power limits

will contribute to a dynamic environment in which hardware and software performance may

considerably during an application’s execution. Furthermore, emerging exascale programming

models will emphasize message-driven computation and finer-grained parallelism, resulting in

more asynchronous computation. It is no longer reasonable to expect that a post-mortem per-

formance measurement and analysis methodology will suffice to optimize applications in such

an environment.

Rather, there is a strong need for runtime performance observation that merges in real time

first-person (application perspective) with third-person (resource perspective) introspection, and

for in situ performance analytics to identify bottlenecks and their impact on specific sections of

code. This information can drive online dynamic feedback and adaptation techniques that can be

integrated with an exascale software stack. The goal is to create an autonomic capability in the

exascale system that can direct the application performance to more productive execution out-

comes. In this paper, we describe our prototype implementation of an Autonomic Performance

Environment for eXascale (APEX) that is part of the OpenX integrated software stack being

developed in the DOE XPRESS project [7] (see Section 2). The APEX prototype supports both

introspection and policy-driven adaptation for performance and power optimization objectives.

We describe the APEX design and development in Section 3. Section 4 shows several examples

that demonstrate the effects of APEX-enabled execution. These focus on making guided adjust-

ments to thread-scheduling controls for different policy objectives. Section 6 discusses the next

steps in our research work.

1Performance Research Laboratory, University of Oregon, Eugene, OR 97405, USA
2Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC 27517, USA
3The STE||AR Group, Louisiana State University, Baton Rouge, LA 70803, USA
4Center for Research in Extreme Scale Technologies, University of Indiana, Bloomington, IN 47408, USA

2. XPRESS Project

The XPRESS project is organized into four major elements: system software; programming

models and languages; applications; and cross-cutting issues. The HPX-3 runtime system [4,

15, 30] serves as a starting point as a programming tools and operating system target at the

beginning of the XPRESS project. This has been complemented by the development of HPX-5,

which is being developed to add functionality for fault tolerance and power management and

to provide a robust open-source runtime system. The LXK lightweight kernel operating system,

based on the advanced Kitten operating system [6, 27], is being developed in response to the

new requirements for billion-way concurrency, introspective management of faults and power,

and management of a protected and dynamic global virtual name space. It targets projected

future directions of system architectures while running efficiently on near term systems, LXK is

co-designed with HPX around the centerpiece of the RIOS interface between the runtime and

operating system software. This interface will share information in both directions between the

two major software layers for performance, reliability, and control of power consumption. The

Open-X software stack is shown in Figure 1.

Legacy
Applications

New Model
Applications

MPI
Metaprogramming

FrameworkDomain Specific
Active Library

Compiler

AGAS
name space
processor

LCO
dataflow, futures
synchronization

Lightweight
Threads

context manager

Parcels
message driven

computation

...

OpenMP

XPI

Task recognition Address
space control

Memory bank
control

OS
thread In

st
ru

m
en

ta
tio

n

Network
drivers

Distributed FrameworkOperating System

Hardware
Architecture

Operating
System

Instances

Runtime
System

Instances

RIOS
Interface / Control

{
{

Domain Specific
Language

+106 nodes ⇥ 103 cores / node + integration network

...

Figure 1: Major components of the OpenX ar-

chitecture stack.

Two programming methods are em-

ployed to provide early means of conducting

application- and kernel-driven experiments, as

well as to facilitate ease of programming and

portability. In addition to the native program-

ming API provided by HPX-3 and HPX-5

and potentially wrapped by Domain Specific

Languages (DSLs), a low-level imperative pro-

gramming interface, XPI, is being developed

to expose the semantic constructs comprising

the ParalleX execution model [15] embodied

in the experimental HPX runtime systems.

The project is exploring legacy mitigation to

ensure the seamless transition to the OpenX

software stack of codes written using MPI or

OpenMP. The approach is to develop XPI in-

terfaces for these programming models, thus

providing interoperability between software

modules in both forms, and providing a path

for incrementally extending parallelism within

the MPI and OpenMP frameworks. APEX

provides performance instrumentation inter-

faces compatible with XPI, DSL, and legacy

codes.

Essential cross-cutting functions includes automatic control and introspection, resilience,

power management and heterogeneity. Power-management software in combination with antic-

ipated energy-efficient hardware will achieve much greater resource utilization per joule while

dramatically reducing data movement, a major source of power consumption, through active

locality management. APEX represents the initial research prototype for introspection and dy-

namic control required for the XPRESS project.

3. APEX Design

3.1. Overview

APEX aims to enable autonomic behavior in software by providing the means for applica-

tions, runtimes, and operating systems to observe and control their performance. Autonomic

behavior requires performance awareness (introspection), and performance control/adaptation.

APEX is designed around these two main components. APEX provides introspection from both

top-down and bottom-up perspectives, including node-wide resource utilization data, energy

consumption, and health information, all accessed in real-time. The introspection results are

combined and associated with policy rules in order to provide the feedback control mechanism.

APEX IntrospectionAPEX Introspection

Synchronous

APEX PolicyAPEX Policy

Asynchronous

Triggered Periodic

APEX StateHPXHPX

Application

RCR
Toolkit

RCR
Toolkit

events

m
et

a
ev

en
ts

. . .

Node 1 Node N

actuators

Figure 2: APEX design

3.2. Introspection

APEX collects top-down introspection data from a runtime system, library, or high-level

application through an event-based inspector API. The software to be controlled is instrumented

with this event API. APEX recognizes several types of logistic events such as initialization,

termination, setting a process rank (e.g., an MPI rank, or HPX locality ID), and creating a new

thread. For measurement, APEX has instrumented timer-start and timer-stop calls, as well as

sampled counter values (e.g., bytes transferred, queue length, idle rate). These API calls enter

APEX as events. Internally, APEX has several event listeners that perform actions based on the

types of events that are passed in to APEX. Events are either handled by listeners immediately

using synchronous code execution or are handled using asynchronous method invocation. For the

asynchronous processing, the event is stored internally on a queue for background processing,

and execution control is quickly returned to the code that called the APEX API. Custom events

are also available to trigger specific policy engine rules. Further explanation of this behavior is

presented in Section 3.4.

Bottom-up introspection data is collected from the operating system and hardware using

periodic sampling. These measurements do not use events, but rather additional OS threads

are spawned to periodically read values directly from available sources. On Unix-like systems,

the /proc virtual filesystem files provide access to CPU, memory, network, disk, process, and

operating system statistics. Resource Centric Reflection (RCR) [18, 19] provides a user-level

API to access any counter available through PAPI, PERF EVENTS, or a hardware instruction.

RCRdaemon runs on protection ring 0 and supplies information about hardware resources shared

by more than one core (e.g., energy consumption, Last Level Cache events, or memory-controller

usage) in a data structure that can be read at user-level. RCRdaemon uses a self-describing

hierarchical data structure in a shared memory region to transmit protected counter values in

an application-agnostic manner. The power interface reads these values and can be used by

any application to acquire power/energy information. RCR calipers can be placed around any

code region (up to the entire application) to measure energy used by that region. On Cray

systems protection level 0 access is denied, but the Cray PM Counters [20] facility is available.

RCRdaemon was therefore modified to get its data from this source. The values were then placed

into the same data structure previously used. The user API was unchanged. Updates occur at

the same rate as Cray updates /proc.

3.3. Event Listeners

As mentioned in Section 3.2, APEX events are processed by event listeners. Each listener

is implemented as a C++ class, and as events pass through APEX, each instantiated listener

is given access to the event object. The listeners implement handler methods for each event

type available in the system. Notable event listeners in APEX include the Profiling Listener,

the Concurrency Listener, the Policy Engine Listener, and the TAU Listener.

The profiling listener implements timer and counter measurement back-end processing

in APEX. The salient events processed by the profiling listener include the timer start,

timer stop and sample value events. When the profiling listener gets a timer start event,

it creates a profiler object, generates a timestamp, and returns a handle to the profiler object.

When the profiling listener gets a timer stop event, it takes a second timestamp, puts the

profiler object in a single-producer-single-consumer (spsc) queue for back-end processing, and

returns. Each OS thread in the process has its own spsc queue to avoid contention. Similarly,

when the profiling listener gets a sample value event, it creates a profiler object, puts it in

the spsc queue for back-end processing, and returns. The profiling listener has a background

consumer thread that waits for a signal that indicates that data has been pushed onto one of the

queues. When the consumer thread has been signalled, it clears all of the spsc queues of pending

work by removing a profiler object from the queue, and updatingit updates the per-thread and

per-process statistical profile for the running application. The currently executing profile can

be queried subsequently at runtime through an introspection API. The optional TAU listener

is similar to the profiling listener, with the exception that all processing is done synchronously

through the TAU measurement library in order to generate a detailed profile or trace for offline,

post-mortem performance analysis.

The concurrency listener works as follows. The salient events processed by the profiling

listener are the timer start and timer stop events. When the concurrency listener gets a

timer start event, it pushes the timer ID onto a thread-specific stack, and returns. When the

profiling listener gets a timer stop event, it pops a timer ID off of the thread-specific stack. The

concurrency listener also has a background consumer thread that periodically examines the top

of each thread’s timer stack and builds a histogram reporting the task currently being executed

by each thread during that time quantum. At the end of execution, the histograms are written

to files on disk and gnuplot [31] is used to visualize a concurrency graph of the application.

Figures 3 through 6 are examples of concurrency graphs. The concurrency listener does not have

a role in runtime adaptation, and is instantiated only when concurrency graphs are desired.

3.4. The Policy Engine

The most important listener component in APEX is the Policy Engine. The policy engine

provides autonomic controls to an application, library, runtime, or operating system using the

introspection measurements described in Section 3.2. Policies are rules that decide on outcomes

based on the observed state captured by APEX. The rules are encoded as callback functions that

are registered with APEX, and are either triggered or periodic. Triggered policies are invoked

by an APEX event, whereas periodic policies, by definition, are executed at set intervals. The

policy rule functions have access to the APEX API in order to request profile values from any

measurement collected by APEX. Using these values to make logical decisions, the functions

can change the behavior of the application by whatever means available, such as throttling

threads, changing task granularity, or triggering data movement such as mesh refinement or

repartitioning. In this way, the policy engine enables runtime adaptation using introspection

data, engages actuators across stack layers, and can be used to invoke online auto-tuning support.

3.5. Global Performance Views

Thus far in the discussion performance introspection has been limited to local node obser-

vations. No performance information from remote nodes or processes is available implicitly to

the local policy functions. However, there are situations in which global performance informa-

tion is necessary to make runtime adaptation decisions for problems such as load balancing.

In those cases, APEX provides a skeleton interface for exchanging local information in a dis-

tributed application scenario. The global exchange of local performance data in APEX is similar

to that provided by TAUg [13], in which TAU performance data collected by an MPI application

was exchanged using MPI functions. Rather than be tied directly to a specific communication

infrastructure, APEX provides a skeleton interface to be populated using the distributed com-

munication library used in the application to be controlled. Examples implemented so far include

HPX-3, HPX-5 and MPI. The interface that the runtime has to implement includes two func-

tions; action apex get value() – each node gets local data to be reduced and performs an

optional put (if implementing a push model); and action apex reduce() - each node performs

an optional get (if implementing a pull model), all remote node data is aggregated at root node,

and an optional push broadcasts the aggregated result back out to the non-root nodes. Ideally,

puts and gets are performed using one-sided communication such as remote distributed memory

accesses (RDMA) or by using a Global Address Space (PGAS or AGAS).

3.6. HPX Integration

APEX is integrated with operating systems, runtime systems, libraries, and applications

by instrumenting the code with calls to the APEX introspection API, as well as by registering

desired policy functions and global communication. Because both HPX-3 and HPX-5 are task-

based runtime systems, we added the instrumentation in the respective task schedulers, placing

timer start/stop calls just before and after task functions are executed, taking special care to

avoid measuring internal lightweight tasks such as “no-op”. Sample value() calls were added to

capture internal runtime statistics (i.e., number of yields, steals, spins, etc.) and we added other

instrumentation for initialization, thread creation and termination. Where applicable, we wrote

policy functions and added the code to register the policy functions to perform adaptation of the

runtime system. All the examples described in Section 4 modify runtime behavior in the same

way, by setting a cap on the maximum number of active worker threads, so we also modified the

HPX thread scheduler loop for worker threads to check the cap value and de-activate a worker

thread if the number of active threads is greater than the thread cap. Even though we are mea-

suring nearly every task executed by the runtime, our measurements show that the overhead

introduced by APEX does not exceed 2%, and is usually less than 1%, depending on the gran-

ularity of the executed tasks. We believe that this is due to our asynchronous profile-processing

combined with the small but sufficient amount of available processing capacity headroom when

executing on many-core nodes. Global performance data is exchanged in HPX using the Active

Global Address Space (AGAS).

4. Experimental Results

In order to demonstrate the features and capabilities of APEX, we integrated it with two

distinct but related runtimes, HPX-3 and HPX-5. We implemented a variety of policy rules, and

we present a selection of them here, along with the applications that best demonstrate them. In

this section, we present the following examples:

• HPX-3 1-D stencil code, runtime optimized for best performance

• HPX-5 Single-source, shortest-path benchmark, runtime optimized for highest throughput

• HPX-5 LULESH kernel, runtime modified to stay under a user-specified power cap

• HPX-3 miniGhost kernel, runtime modified to stay under a user-specified power cap

All of the experiments described below were conducted on Edison, a Cray XC30 system deployed

at NERSC [21]. Edison has 5576 nodes with two 12-core Intel ”Ivy Bridge” processors operating

at 2.4 GHz, with a total of 48 threads per node (24 physical cores w/hyperthreading). The

network on Edison is a Cray Aries interconnect with Dragonfly topology, with 23.7 TB/s global

bandwidth.

4.1. HPX-3 1-D Stencil Code

The 1D stencil code is a simple, iterative heat-diffusion solver using a 3-point stencil, used

as an example code for HPX-3, and for which multiple versions are available with different

optimizations applied. The simplest version represents the computation for each data point as

an individual future, but the performance of this version is extremely poor as the task granularity

is far too small. The version with good performance partitions the data into a user-configurable

number of equally-sized chunks, with the computation on each chunk being represented as a

future. Within a node, performance initially increases with an increasing number worker threads,

but then decreases.

Figure 3a shows the runtime (blue line) of the 1D stencil code as function of number of

worker threads from 1 to 24, which is the number of physical cores available on Edison nodes.

It also shows that runtime is highly correlated with the average thread queue length (red line),

which is a counter exposed by the HPX-3 runtime representing the number of tasks waiting

to execute on worker threads. APEX can query the thread queue length while the program is

executing and adjust dynamically the number of worker threads allocated to minimize runtime.

Figure 3b shows the concurrency graph for the execution of the 1D stencil code run on

100,000,000 elements partitioned into 1000 chunks with 48 worker threads, which is the number

of logical cores available on an Edison node with hyperthreading enabled. Actual concurrency

is substantially lower, as many tasks are waiting on dependencies to complete before becoming

eligible to run, and there is substantial variability in actual concurrency over time. This execution

takes 138 seconds to run. Figure 3c shows the concurrency graph for an execution of the same

problem size but with 12 worker threads, which produces the shortest runtime of any number

of worker threads. That execution takes 61 seconds to run.

Figure 3d shows the concurrency graph for the same problem size and an initial number

of worker threads of 48, but using discrete hill-climbing search to minimize the average thread

queue length. This converges on 13 worker threads (vs. the optimal value of 12) and does so

quickly enough that the overall runtime is nearly as fast (64 seconds) as starting with the optimal

number.

4.2. HPX-5 SSSP benchmark

The Single Source, Shortest Path graph search benchmark (SSSP) is one of the Graph500 [1]

benchmark kernels, added as Kernel 3 in versions of the benchmark after 1.2. Given an initial

graph, the SSSP benchmark computation finds the shortest distance from a given starting vertex

to every other vertex in the graph. In the HPX-5 implementation, a large graph is loaded and

distributed across localities, a point is selected at random, and the shortest path between it and

all other points is found. The search runs for a fixed length of time, and terminates when the

accumulated time performing searches exceeds the specified length of time. Key constraints of the

benchmark are that only one initial vertex search is performed at a time, and no memoization

between searches is allowed. The dataset used in this example is the Random4-n.10 dataset,

executed for 60 seconds worth of timed searches. For this benchmark, the metric of interest is

total throughput, not time to completion. The code was run on 10 nodes, using 24 threads per

node (no hyperthreading).

The APEX Policy rule used for optimization of SSSP was the maximization of the number of

calls to handle queue action(), used as proxy for the “throughput” metric. The primary met-

ric for this benchmark is Traversed Edges Per Second (TEPS), and the queue contains vertices

to be explored. The policy function adjusts the thread concurrency to maximize throughput,

using the Parallel Rank Order search strategy provided by the auto-tuning and optimization

search framework Active Harmony [8]. The initial value for the thread cap was set at 24, with

a minimum value of 6. The policy function was registered to execute on a periodic basis (1Hz),

adjusting the thread cap to a new value as specified by the optimization search.

Figure 4a shows the cumulative concurrency graph across all 10 nodes for the baseline exe-

cution. The concurrency charts show a stacked bar chart with the periodic (1Hz) instantaneous

status of all threads. The red line indicates the maximum total number of threads (fixed at 240),

and the instantaneous power measurement for each sample is the black line. In this run, 1962

searches are performed in 60 seconds. The graph shows that nearly all 240 threads are busy, and

power consumption is about 240 W per node.

Figure 4b shows the cumulative concurrency graph across all 10 nodes for the throttled

execution, using the policy engine. The total maximum number of threads starts at 240, but is

throttled while Active Harmony searches for an optimal number of active threads to maximize

transaction throughput. As in the baseline figure, the evolving thread cap is the red line and

53

63

73

83

93

103

113

123

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Th
re
ad

'Q
ue

ue
'Le

ng
th

Ru
nt
im

e'
(s
)

Number'of'Worker'Threads

1d_stencil

(a) 1D stencil strong scaling. This chart shows the

correlation between the execution time (blue line) and

the queue lengths (red line) when running with differ-

ent numbers of threads on Edison.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
o
n
c
u
rr

e
n
c
y

P
o
w

e
r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

(b) 1D Stencil unthrottled. This concurrency chart

shows a stacked bar chart with the periodic (1 Hz)

status of each OS thread. The max number of threads

is 48, and the instantaneous power for each sample is

the black line.

 0

 2

 4

 6

 8

 10

 12

 0

 300

C
o
n
c
u
rr

e
n
c
y

P
o
w

e
r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

(c) 1D Stencil with ideal number of threads. This con-

currency chart shows the periodic (1 Hz) status of

each OS thread. The number of threads is fixed at 12,

and the instantaneous power for each sample is the

black line.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
o
n
c
u
rr

e
n
c
y

P
o
w

e
r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

(d) 1D Stencil throttled by APEX. This concurrency

chart shows the periodic (1 Hz) status of each OS

thread. The number of active threads starts at 48,

but is throttled while APEX searches for an optimal

number of active threads to minimize execution time.

The evolving thread cap is the red line, and the in-

stantaneous power draw is the black line.

Figure 3: 1D Stencil.

the instantaneous power for each sample is the black line. In this execution, 6929 searches

were performed in 60 seconds. When the search converges, only 61 (6 threads on 9 nodes, 7

threads on one node) threads are active. As a side-effect, power consumption is much lower,

about 150 W per node. Most importantly, the number of searches done in the 60 seconds is

several times higher. Figure 4c shows the correlation between the throughput (total calls to

handle queue action()) and the evolving thread cap.

Table 4d shows a comparison of key metrics between the baseline and the runtime optimized

executions of SSSP. In the throttled execution, the total cycles and instruction counts are re-

duced, while the number of L2 cache misses increases slightly. Because the graph is distributed,

visiting remote vertices requires network communication. The network request causes a worker

thread to yield the task waiting on the network request to perform other work, rather than block

and wait on the result. The yield process is implemented using locks, so increased requests for

the network lead to lock contention in the runtime. The yield algorithm also includes a small

amount of “busy work”, which explains the reduction in instructions. Essentially, this appli-

cation implementation appears to be network-bound, so reducing the number of active worker

threads decreases the contention for yielded tasks. As can be seen in the table, the TEPS metrics

are increased considerably by throttling, resulting in greater throughput. It is important to note

that the problem is not with the runtime, but with the nature of the implementation. Because

the graph is distributed, the threads contend while waiting on remote actions.

 0

 50

 100

 150

 200

 250

 0

 500

 1000

 1500

 2000

 2500

C
on

cu
rre

nc
y

Po
w

er

Time

hpxlcosetactionPINNED
lcowaitPINNED

resetvertexaction
ssspvisitvertexaction

callssspaction
ssspdeletequeuesaction

ssspdcprocessvertexaction
handlequeueaction

dimacschecksumaction
dimacssenddistaction

gtepscalculateaction
sendterminationcountaction

other
initvertexdistanceaction
dimacsvisitvertexaction

gtepssenddistaction
probeDEFAULT

gtepsvisitvertexaction
thread cap

power

(a) SSSP Baseline.

 0

 50

 100

 150

 200

 250

 0

 500

 1000

 1500

 2000

 2500

C
on

cu
rre

nc
y

Po
w

er

Time

hpx143fixDEFAULT
hpxlcosetactionPINNED

lcowaitPINNED
resetvertexaction

edgelistfromfileaction
ssspvisitvertexaction

callssspaction
ssspdeletequeuesaction

ssspdcprocessvertexaction
handlequeueaction

dimacschecksumaction

dimacsvisitvertexaction
dimacssenddistaction
gtepscalculateaction

sendterminationcountaction
other

probeDEFAULT
initvertexdistanceaction

gtepssenddistaction
gtepsvisitvertexaction

thread cap
power

(b) SSSP Throttled, with power consumption side ef-

fect.

 0

 50

 100

 150

 200

 250

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

C
on

cu
rre

nc
y

Th
ro

ug
hp

ut

Time

hpx143fixDEFAULT
hpxlcosetactionPINNED

lcowaitPINNED
resetvertexaction

edgelistfromfileaction
ssspvisitvertexaction

callssspaction
ssspdeletequeuesaction

ssspdcprocessvertexaction
handlequeueaction

dimacschecksumaction

dimacsvisitvertexaction
dimacssenddistaction
gtepscalculateaction

sendterminationcountaction
other

probeDEFAULT
initvertexdistanceaction

gtepssenddistaction
gtepsvisitvertexaction

thread cap
Throughput

(c) SSSP Throttled, with throughput metric correla-

tion to thread cap.

Metric Baseline Throttled

Searches 1962 6929

Cycles 6.9E + 12 2.8E + 12

Instructions 3.2E + 12 2.0E + 12

L2TCM 8.0E + 9 8.6E + 9

IPC 0.45896 0.71626

INS/L2TCM 397.52 235.23

min. TEPS 7.2E + 04 9.5E + 04

med. TEPS 1.4E + 05 5.0E + 05

max. TEPS 2.5E + 05 7.6E + 05

(d) Metric comparison between the baseline

and throttled executions of SSSP.

Figure 4: SSSP Benchmark.

4.3. HPX-5 LULESH kernel

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) bench-

mark is one of the proxy applications for the US Department of Energy co-design efforts for

exascale. LULESH is a proxy application from the Lawrence Livermore National Laboratory

(LLNL) that is used to model and study hydrodynamics, the motion of materials relative to

each other when subject to forces. The HPX-5 LULESH implementation was written by the

HPX-5 researchers at Indiana University. Because LULESH is CPU bound in most implementa-

tions, it is an interesting test case to demonstrate what happens when executed under a power

cap. Because it is CPU bound, reducing the power consumption typically involves using fewer

threads or slowing down the CPU clock speed, which will affect performance.

For this example, we developed an APEX policy for maintaining power draw within a

high/low range. The policy will periodically check the power draw, and if the current power

draw is greater than the high power cap, the thread cap will be reduced. If the power draw

is lower than the low power cap, the thread cap will be increased. The policy rule is a simple

hill-climbing algorithm with hysteresis, using a running average of the last N observations. In

our tests, we set N = 3. We modified the HPX-5 thread scheduler algorithm to check the thread

cap on every iteration of the main worker loop. If a thread is not holding any resources and

the number of active workers is greater than the current thread cap, the thread goes into an

idle state until signaled to resume work. If the number of active workers is less than the cap,

an active worker signals an idle thread to resume working. A quiescent node of Edison draws

approximately 40W, whereas a fully loaded node draws approximately 300W. We used a high

power cap of 200W, and a low cap of 180W. We executed LULESH with 343 sub-domains,

nx = 48, for 100 iterations on 16 nodes of Edison.

Figure 5a shows the cumulative concurrency graph across all 16 nodes for the baseline

execution. The tasking time in the application takes 74 seconds, and when the aprun launch

and HPX startup time is included the total runtime is 91 seconds. The red line shows the

maximum concurrency, 768 threads (fixed). The black line shows the cumulative power draw

across all 16 nodes. The power consumption maxes out around 4500W, about 281W per node.

The average power draw per node was around 247W. The total energy usage was measured

as 360kJ (kilojoules). The stacked bar chart shows which tasks were executing when APEX

sampled them with a 1Hz period.

Figure 5b shows the cumulative concurrency graph across all 16 nodes for the throttled

execution, using the policy engine. The key difference between the two executions is that the

total energy draw for the throttled execution was only 280kJ (approximately 22% less) while

the execution time only increased by about 3 seconds (approximately 3.6%). The red line shows

the thread cap as it is modified by the policy. The black line shows the reflected reduction in

power draw, with some localized fluctuations. The average power draw for this run was 186 W.

Once the search converged, this execution used less than 1/3 the number of threads, but only

took 3 seconds longer.

Like the SSSP benchmark, the throttled version of LULESH does not yield tasks as much

as the original. A sampled TAU profile showed much less time spent in yielding activity when

a worker thread surrenders its task in order to stay busy while waiting on a remote result. Our

conclusion is that the assignment of sub-domains to localities in HPX does not maintain spatial

locality, but rather assigns them round-robin to distribute the work. The HPX-5 implementation

is being rewritten in order to exploit spatial locality, and put less pressure on the network.

4.4. HPX-3 miniGhost kernel

MiniGhost [5], developed as part of the Mantevo project [11], is a finite difference miniapp

simulating heat diffusion over a three-dimensional domain. The original version uses OpenMP

intra-node and MPI inter-node. It has been ported to HPX-3 [3]; this version uses HPX for

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0

 1000

 2000

 3000

 4000

 5000

C
on

cu
rre

nc
y

Po
w

er

Time

hpx143fixDEFAULT
lcogetPINNED

advanceDomainaction
SBN1resultaction
SBN3resultaction

PosVelresultaction
PosVelsendsaction
MonoQresultaction

MonoQsendsaction
other

probeDEFAULT
SBN3sendsaction

hpxlcosetactionPINNED
thread cap

power

(a) LULESH Baseline.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0

 1000

 2000

 3000

 4000

 5000

C
on

cu
rre

nc
y

Po
w

er

Time

hpx143fixDEFAULT
probeDEFAULT

lcogetPINNED
advanceDomainaction

mainaction
SBN1resultaction
SBN3resultaction

PosVelresultaction

MonoQresultaction
MonoQsendsaction

other
SBN3sendsaction

hpxlcosetactionPINNED
PosVelsendsaction

thread cap
power

(b) LULESH Throttled.

Figure 5: LULESH Benchmark.

both intra- and inter-node parallelism. The HPX version provides better performance than the

original OpenMP version.

Figure 6a shows that there are diminishing returns from allocating additional worker threads

to MiniGhost. This suggests than we can throttle the application by cutting back on the number

of worker threads to reduce energy usage while avoiding substantial performance degradation.

Figure 6b shows the concurrency with 48 worker threads, the number of logical cores on an

Edison node. While not all available worker threads are used, the application will often use

slightly more than the 24 physical cores available. With 48 worker threads, MiniGhost runs in

92 seconds and uses about 275 Watts of power. Figure 6c shows the concurrency when the initial

number of worker threads is set to 48 but the thread cap is dynamically adjusted to keep power

at or below 200 Watts. APEX converges on a thread cap of 20, yielding 200 Watts of power

usage, a 33% reduction in power, and a runtime of 103 seconds, a 12% increase in runtime.

5. Related Work

Several performance tools use measurement for the purposes of offline performance analy-

sis, including TAU [28], HPCToolkit [2], Scalasca [32], Vampir [17], Extrae [23] and others. All

powerful and capable tools in their own right. These tools, however, were designed for offline per-

formance analysis and tuning, focusing on first-person performance measurement of tied tasks

on a per-thread (OS thread) basis. New and emerging exascale programming models present

technical challenges that the designers of those measurement systems had not considered, such

as untied task execution and migration, runtime thread control and execution, third-person

observation, and runtime performance tuning. Also, because these tools are inescapably intru-

sive, they are not designed to be integrated permanently into an application for continuous

performance introspection, but rather, to be used in an iterative execute-analyze-tune cycle. In

contrast, APEX is designed to perform asynchronous first- and third-person measurement for

the sole purpose of supporting runtime introspection and performance adaptation.

One of the most active research areas in HPC is to reduce energy consumption while main-

taining and even improving performance. For example, Curtis-Maury et al. [9] demonstrated

the ability to build a runtime-adaptable optimization that both converges on the best perform-

ing configuration and reduces power consumption. This result is due to the observation that

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45

Ru
nt
im
e
(s
)

HPX worker threads

Minighost

(a) miniGhost strong scaling.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
o
n
c
u
rr

e
n
c
y

P
o
w

e
r

Time

continuation::async
hpx_main

other
thread cap

power

(b) miniGhost Baseline. This concurrency chart shows

a stacked bar chart with the periodic (1Hz) status of

each thread. The max number of threads is 48 (red

line), and the instantaneous power for each sample is

the black line.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
o
n
c
u
rr

e
n
c
y

P
o
w

e
r

Time

continuation::async
hpx_main

other
thread cap

power

(c) miniGhost Throttled. This concurrency chart

shows a stacked bar chart with the periodic (1Hz) sta-

tus of each thread. The max number of threads starts

at 48, but is throttled while APEX searches for an

optimal number of active threads to keep under the

power cap. The evolving thread cap is the red line and

the instantaneous power for each sample is the black

line.

Figure 6: miniGhost Benchmark.

some parallel applications have diminishing returns with respect to scalability, and additional

hardware merely consumes more power without improving performance. Rountree et al. [26]

demonstrate the use of dynamic voltage scaling to save energy while minimizing impact on

performance. Their Adagio approach attempts to scale computation and communication in dis-

tributed MPI applications using only local information acquired and applied at runtime in order

to eliminate slack at synchronization points. Rountree et al. [25] have subsequently explored the

inherent variation among processors and the range of effects that placing a hard power cap has

on applications with different characteristics.

With respect to runtime thread scheduling, Olivier et al. [22] demonstrated that a hierar-

chical, cache-aware thread scheduler performs better than a flat task scheduling in conjunction

with load balancing (via task stealing) within cache and/or NUMA domains. While this is a

form of runtime adaptation, it is an approach targeting one issue and does not react to runtime

measurements, but rather uses thread affinity and memory hierarchy information at startup.

Similarly, Charm++ [16, 33] has mechanisms for distributed dynamic load-balancing based on

runtime information. Other researchers have used Charm++ as a platform for developing ad-

ditional runtime load-balancing strategies [14] both between nodes and within a node using

cache/memory hierarchical information. The OmpSs runtime system has demonstrated the abil-

ity to schedule an appropriate kernel implementation based on available heterogeneous hardware

choices [10, 24]. In this implementation, DGEMM tasks are scheduled on either CPU or GPU

resources depending on the input size, available hardware and prior performance results. Hoff-

man et al. [12] have developed an interface for diverse applications to report a performance

measure in a generic way so that operating systems and runtimes can adapt themselves to opti-

mize application performance. In their Application Heartbeats framework, applications signal a

“heartbeat” as they make progress in a computation; for example, a video-encoding application

could signal a heartbeat each time it processes a frame. The system then tries to optimize the

observed “heart rate”. They provide examples of optimizations purely within an application,

such as a video encoder switching algorithms and altering parameters to algorithms to meet

a target frame rate, and outside applications, such as a computer-vision application that ad-

justs the number of cores that it uses to find the smallest number of cores necessary to achieve

real-time video processing.

6. Conclusion

The quest for exascale brings fundamentally new challenges to performance and to produc-

tivity. The solutions that will likely usher in the exascale era will require software designers and

users to embrace performance heterogeneity and variability. We believe that any successful im-

plementation will have to integrate performance introspection, in situ analysis, and adaptation

in an exascale system stack. The XPRESS project has developed a prototype of APEX inte-

grated with HPX-3 and HPX-5 for use in OpenX. We have demonstrated APEX with several

benchmark examples, and we believe that the APEX framework is generally applicable to other

X-stack runtime efforts.

There is considerable work that can be done with respect to APEX. In the short term,

we would like to conduct more robust application experiments and to explore behavior larger

scales on different platforms. As more applications are developed using HPX, we hope to have

a greater opportunity to demonstrate the APEX capabilities for runtime adaptation. With that

in mind, new applications will present more and better policy (optimization) rules, both for

specific applications and to generalize these in the operating system and runtime libraries. In

particular, we are interested in possible policy rules that address heterogeneous HPX-3 code

that can be executed on GPGPUs, as well as many-core architectures such as the Intel Phi. We

plan to develop more policy rules that specifically address the SLOWER design principles of the

ParalleX model [29]. We soon will be exploring the multi-objective optimization opportunities

available in the development branch of Active Harmony. With that support, we can tune with

respect to both performance and energy efficiency, as well as to any other application-specific

metrics. Finally, we believe that APEX has applications outside of the XPRESS project, and that

it can be successfully integrated into other runtime systems and parallel execution models with

controllable parameters, including OpenMP, MPI, and OmpSs. It can serve as a framework for

triggering application-specific optimizations such as adaptive mesh refinement, load balancing,

and other dynamic behavior.

Support for this work was provided through the X-Stack Software Research and Scien-

tific Discovery through Advanced Computing (SciDAC) programs funded by the U.S. De-

partment of Energy, Office of Science, Advanced Scientific Computing Research (and Basic

Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy

Sciences/Nuclear Physics) under award numbers DE-SC0008638, DE-SC0008704, DE-FG02-

11ER26050 and DE-SC0006925. Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Mar-

tin Corporation, for the U.S. DOEs National Nuclear Security Administration under contract

DE-AC04-94AL85000. This research used resources of the National Energy Research Scientific

Computing Center, a DOE Office of Science User Facility supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

1. Graph 500. The graph 500 list. http://www.graph500.org, April 2015.

2. L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. Hpctoolkit: tools for performance analysis of optimized parallel programs

http://hpctoolkit.org. Concurr. Comput. : Pract. Exper., 22:685–701, April 2010.

3. Vinay C Amatya. Parallel Processes in HPX: Designing an Infrastructure for Adaptive

Resource Management. PhD thesis, Louisiana State University, 2014.

4. Matthew Anderson, Maciej Brodowicz, Hartmut Kaiser, and Thomas L. Sterling. An Ap-

plication Driven Analysis of the ParalleX Execution Model. CoRR, abs/1109.5201, 2011.

http://arxiv.org/abs/1109.5201.

5. Richard F Barrett, Courtenay T Vaughan, and Michael A Heroux. MiniGhost: a miniapp

for exploring boundary exchange strategies using stencil computations in scientific parallel

computing. Technical Report SAND2012-10431, 2011.

6. Ron Brightwell and Kevin Pedretti. An intra-node implementation of OpenSHMEM using

virtual address space mapping. In Proceedings of the Fifth Partitioned Global Address Space

Conference, October 2011.

7. Sandia Corporation. eXascale PRogramming Environment and System Software (XPRESS).

http://xstack.sandia.gov/xpress/, April 2015.

8. Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active harmony: Towards

automated performance tuning. In Proceedings of the 2002 ACM/IEEE Conference on

Supercomputing, SC ’02, pages 1–11, Los Alamitos, CA, USA, 2002. IEEE Computer Society

Press.

9. Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S.

Nikolopoulos. Online power-performance adaptation of multithreaded programs using hard-

ware event-based prediction. In Proceedings of the 20th Annual International Conference

on Supercomputing, ICS ’06, pages 157–166, New York, NY, USA, 2006. ACM.

10. Alejandro Duran, Eduard Ayguad, Rosa M. Badia, Jesüs Labarta, Luis Martinell, Xavier

Martorell, and Judit Planas. Ompss: A proposal for programming heterogeneous multi-core

architectures. Parallel Processing Letters, 21(02):173–193, 2011.

11. Michael Heroux and Richard Barrett. Mantevo project, 2011.

12. Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant

Agarwal. Application heartbeats: A generic interface for specifying program performance

and goals in autonomous computing environments. In Proceedings of the 7th International

Conference on Autonomic Computing, ICAC ’10, pages 79–88, New York, NY, USA, 2010.

ACM.

13. Kevin A. Huck, Allen D. Malony, Sameer Shende, and Alan Morris. TAUg: Runtime

global performance data access using MPI. In Bernd Mohr, Jesper Larsson Träff, Joachim

Worringen, and Jack Dongarra, editors, Recent Advances in Parallel Virtual Machine and

Message Passing Interface, volume 4192 of Lecture Notes in Computer Science, pages 313–

321. Springer Berlin Heidelberg, 2006.

14. E. Jeannot, E. Meneses, G. Mercier, F. Tessier, and Gengbin Zheng. Communication and

topology-aware load balancing in charm++ with treematch. In Cluster Computing (CLUS-

TER), 2013 IEEE International Conference on, pages 1–8, Sept 2013.

15. Hartmut Kaiser, Maciej Brodowicz, and Thomas Sterling. ParalleX: An advanced parallel

execution model for scaling-impaired applications. In Parallel Processing Workshops, pages

394–401, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

16. Laxmikant V. Kale and Gengbin Zheng. Charm++ and AMPI: Adaptive Runtime Strategies

via Migratable Objects. In M. Parashar, editor, Advanced Computational Infrastructures

for Parallel and Distributed Applications, pages 265–282. Wiley-Interscience, 2009.

17. Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger

Mickler, Matthias S Müller, and Wolfgang E Nagel. The Vampir performance analysis

tool-set. In Tools for High Performance Computing, pages 139–155. Springer, 2008.

18. Anirban Mandal, Rob Fowler, and Allan Porterfield. Modeling memory concurrency for

multi-socket multi-core systems. In Proceedings of the 2010 IEEE International Sympo-

sium on Performance Analysis of Systems and Software (ISPASS2010), pages 56–75, White

Plains, NY, March 2010. IEEE.

19. Anirban Mandal, Rob Fowler, and Allan Porterfield. System-wide introspection for accu-

rate attribution of performance bottlenecks. In Second International Workshop on High-

perfromance Infrastruture for Scalable Tools, 2012.

20. Steven J. Martin and Matthew Kappel. Cray XC30 Power Monitoring and Management.

In Cray User Group Conference Proceedings, 2014.

21. The National Energy Research Scientific Computing Center (NERSC). Edison. https:

//www.nersc.gov/users/computational-systems/edison/, April 2015.

22. Stephen L. Olivier, Allan K. Porterfield, Kyle B. Wheeler, and Jan F. Prins. Scheduling

task parallelism on multi-socket multicore systems. In Proceedings of the 1st International

Workshop on Runtime and Operating Systems for Supercomputers, ROSS ’11, pages 49–56,

New York, NY, USA, 2011. ACM.

23. Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. Paraver: A tool to visualize

and analyze parallel code. In Proceedings of WoTUG-18: Transputer and occam Develop-

ments, volume 44, pages 17–31. mar, 1995.

24. J. Planas, R.M. Badia, E. Ayguade, and J. Labarta. Self-adaptive ompss tasks in het-

erogeneous environments. In Parallel Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pages 138–149, May 2013.

25. Barry Rountree, Dong H Ahn, Bronis R de Supinski, David K Lowenthal, and Martin

Schulz. Beyond dvfs: A first look at performance under a hardware-enforced power bound.

In Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),

2012 IEEE 26th International, pages 947–953. IEEE, 2012.

26. Barry Rountree, David K. Lownenthal, Bronis R. de Supinski, Martin Schulz, Vincent W.

Freeh, and Tyler Bletsch. Adagio: Making dvs practical for complex hpc applications. In

Proceedings of the 23rd International Conference on Supercomputing, ICS ’09, pages 460–

469, New York, NY, USA, 2009. ACM.

27. Sandia National Laboratories. The Kitten Lightweight Kernel. https://software.sandia.

gov/trac/kitten.

28. S. Shende and A. D. Malony. The TAU Parallel Performance System. International Journal

of High Performance Computing Applications, 20(2):287–331, Summer 2006.

29. Thomas Sterling, Daniel Kogler, Matthew Anderson, and Maciej Brodowicz. Slower: A per-

formance model for exascale computing. Supercomputing frontiers and innovations, 1(2):42–

57, 2014.

30. Alexandre Tabbal, Matthew Anderson, Maciej Brodowicz, Hartmut Kaiser, and Thomas

Sterling. Preliminary design examination of the ParalleX system from a software and hard-

ware perspective. SIGMETRICS Performance Evaluation Review, 38:4, Mar 2011.

31. Thomas Williams and Colin Kelley. Gnuplot homepage. http://www.gnuplot.info, April

2015.

32. Felix Wolf, Brian J. N. Wylie, Erika Abraham, Daniel Becker, Wolfgang Frings, Karl

Furlinger, Markus Geimer, Marc-Andre Hermanns, Bernd Mohr, Shirley Moore, Matthias

Pfeifer, and Zoltan Szebenyi. Usage of the scalasca toolset for scalable performance analy-

sis of large-scale parallel applications. In Michael Resch, Rainer Keller, Valentin Himmler,

Bettina Krammer, and Alexander Schulz, editors, Tools for High Performance Computing,

pages 157–167. Springer Berlin Heidelberg, 2008.

33. Gengbin Zheng, E. Meneses, A. Bhatele, and L.V. Kale. Hierarchical load balancing

for charm++ applications on large supercomputers. In Parallel Processing Workshops

(ICPPW), 2010 39th International Conference on, pages 436–444, Sept 2010.

