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Abstract—Distributed memory parallelization of unstructured
meshes pose numerous challenges for attaining high performance
and efficiency. In this paper, we address two of these primary
challenges in the context of an ocean modeling code, MPAS-
Ocean, which uses a mesh based on Voronoi tessellations: (1) load
imbalance across processes, and (2) unstructured data access
patterns, that inhibit intra- and inter-node performance. Load-
balance and communication patterns are affected mainly by the
grid partitioning strategy, while memory access patterns are
impacted by the layout of data structures in the memory. Qur
work analyzes the load imbalance due to naive partitioning of the
mesh, and develops methods to generate mesh partitioning with
better load balance and reduced communication. Furthermore,
we present methods that minimize both inter- and intra-node
data movement and maximize data reuse. Our techniques include
predictive ordering of data elements for higher cache efficiency, as
well as communication reduction approaches. We present detailed
performance data when running on thousands of cores using
the Cray XC30 supercomputer and show that our optimization
strategies can exceed the original performance by over 2x.
Additionally, many of these solutions and can be broadly applied
to a wide variety of unstructured grid-based computations.

I. INTRODUCTION

Iteration-based computational simulations require an ab-
stract representation of the real-world state. In most cases,
the data is represented in a multidimensional collection of data
points where some of the data points define spatial coordinates.
In these applications, the spatial domain is decomposed into
cells and the collection of cells forms a mesh or grid. In a
distributed parallel implementation, these spatial coordinates
often provide a convenient framework for decomposition of
the data into independent, distributable blocks of cells as
partitions.

Structured, or regular, meshes have regularly shaped cells
and a regular connectivity. For example, 2D structured meshes
are typically represented with rectilinear or curvilinear quad-
rangles which can often be easily decomposed into partitions.
As expected, structured meshes are appropriate when they
are sufficient for regular spatial domains. One problem with
structured meshes is that because they are distorted in order to
enclose certain shapes, such as the poles of cones and spheres,
two or more vertex points share the same location, resulting
in a singularity, where the tangent space is undefined.

On the other hand, unstructured, or irregular, meshes have
arbitrary polygon cells and irregular connectivity. Often, un-
structured meshes are represented with variable-sized triangles
that intersect at high-radix nodes. As such, partitioning is
often non-obvious and driven by complex algorithms. These
meshes are useful in applications requiring either multiscale
and/or variable resolution, and they map better to organic and
curved surfaces (such as the Earth’s surface). Furthermore,
unlike structured meshes, unstructured meshes do not have
singularities, or major distortions when mapped to 2D [1].
Applications where unstructured meshes are applicable include
adaptive mesh refinement (other than block structured), multi-
resolution domains, and finite element methods on an irregular
domain.

Often domain decomposition for distributed memory com-
putations require the use of ghost or halo cells from neighbor-
ing partitions when cells on the boundary of a partition require
input from neighboring cells assigned to a different partition.
Decomposition of unstructured meshes that are not fully
connected results in irregular partition with potentially with
high variability in the numbers of halo cells for each partition.
This leads to load imbalance, increasing synchronization wait
times and decreasing computational throughput. Furthermore,
relatively large halo regions exacerbate this situation.

The on-node memory access patterns of structured and
unstructured codes tend to be very different. Structured meshes
are convenient in that their layout in memory is amenable
to optimizations such as blocking, tiling, good cache reuse
and vectorization because the cells are often represented as
multidimentional rectangular arrays. Because of their regular
shape and layout, they have a predicatable use pattern. In
contrast, unstructured meshes are a performance challenge, as
they are frequenly represented as connected graphs with non-
contiguous memory layouts using pointers. Iterating over the
“neighbors” of an unstructured mesh cell can result in poor
cache reuse due to pointer chasing since the neighbors may
not necessarily be local in memory.

In this paper, we address these two challenges put forth
by unstructured mesh, load imbalance and unstructured data
access patterns. The issue of load imbalance is discussed
and addressed in Sections III and IV, and the unstructured
data access issue is addressed in Section V. In addition, to



Fig. 1. (Left) Global variable resolution ocean mesh with refinement placed
over the North Atlantic. Coloring is value of the generating density function.
Pink is a value of 1, blue is a value of (1/5)%. (Right) Detail of a region
from the global variable resolution ocean mesh. Coloring is the same, with
the actual mesh overlaid to show smoothness of mesh cells.

Fig. 2. Diagram showing MPAS-O horizontal staggering. Blue squares rep-
resent scalar data (mass, temperature, etc.), orange circles represent vorticity
related quantities, red triangles represent vector quantities (velocities).

reduce data movement, we present strategies for computation
and communication avoidance in Section VI. We present our
results and solutions in the context of an ocean modeling code,
MPAS-Ocean [1], which we briefly describe in Section II-A.

II. BACKGROUND AND RELATED WORK

We provide a description of the application at hand in the
following. We also discuss the issues of load imbalance and
unstructured data, and provide related work.

A. Ocean Modeling with MPAS-O

The Model for Prediction Across Scales (MPAS) is a model-
ing framework collaboratively developed between Los Alamos
National Laboratory and the National Center for Atmospheric
Research [1]. MPAS is written in C and Fortran, and is
intended to provide developers with tools to enable rapid pro-
totyping and development of climate model dynamical cores.
The MPAS framework is built on top of unstructured mesh
data structures that make heavy use of indirect addressing. The
MPAS framework is publicly available' and currently contains
four dynamical cores. These provide a shallow water model
(MPAS-SW), and models of the Earths atmosphere (MPAS-
A), land ice (MPAS-LI), and oceans (MPAS-O). This paper
describes optimization efforts on unstructured meshes in the
context of MPAS-O.

MPAS-O is a next generation global ocean model, built on
top of spherical centroidal Voronoi tessellations (SCVT). The

Ihttp://mpas-dev.github.io

Fig. 3.
simulated days. Using a variable resolution mesh that is 15km at the equator
and 5km at the poles. Centered in the area of the Antarctic circumpolar current,
in the south Atlantic.

Surface temperature from an MPAS-Ocean simulation after 90

resultant meshes are composed of arbitrarily shaped polygons
which bring unique challenges to load balancing and cache
locality. In addition to containing arbitrary polygons, these
meshes can be generated using a density function to place
areas of static mesh refinement in areas of interest (such as
the North Atlantic seen in Fig. 1). A major advantage of this
type of mesh is that it provides smooth transition regions,
also shown in Fig. 1, while allowing for drastically different
resolutions in different regions of the mesh. It also eliminates
the need for “hanging node” issues, that are common in regular
structured variable resolution meshes, while still providing
refinement around areas of interest. Building off of this un-
structured mesh, MPAS-O enumerates its data on a staggered
horizontal Arakawa C-Grid, visualized in Fig. 2. While the
horizontal data structure is staggered and unstructured, MPAS-
O has a vertical (“column”) data structure that is regular and
structured. This facilitates vectorization of column operations.

Global climate modeling is considered a grand challenge
problem due to the spatial and temporal scales required to
accurately simulate the phenomena. Temporal scales for cli-
mate models are on the order of centuries, while spatial scales
are on the order of tens of kilometers. The requirements for
performing global climate model simulations require models
such as MPAS-O to simulate on large number of horizontal
degrees of freedom of O(10) to O(107), with extremely
short time steps. In addition, MPAS-O performs simulations
using generally 100 vertical levels per horizontal degrees of
freedom. Coupled together, these imply MPAS-O needs to
run efficiently on high concurrency system to drive next-
generation ocean analysis solutions. An example of an MPAS-
O simulation result is shown in Fig. 3.

B. Load Balance

Load balancing across processing units in parallel applica-
tions is a widely researched topic due to its importance in
gaining higher parallel efficiency. Load imbalance leads to
underutilization of computational resources. Achieving a good
load balance is particularly challenging when dealing with
unstructured grids because their equal decomposition is not
obvious [2], [3]. As unstructured grids are easily representable
as graphs, many of the decomposition strategies for such



Fig. 4. An example visualization of the computational load imbalance of
MPAS-Ocean using a grid with 1.8 million cells split into 2048 partitions,
one per process. Bluer parts have low load and red parts have high load.
In this example, the most utilized process performs approximately 3.26x
as much work as the least utilized process, and approximately 30% of the
mean execution time is spent in synchronization. Generally, computational
load varies linearly with ocean depth and inversely with mesh spacing. Current
partitioning scheme ignores the former.

grids are based on the graph partitioning algorithms. Although
the graph partitioning problem is NP-complete, a number of
heuristic-based partitioning algorithms exist [4]-[7].

The MPAS-O application uses a widely used graph par-
titioning tool, Metis [8] where the input is a graph repre-
sentation of the unstructured grid. As will be discussed in
Section III, using this approach directly is not quite effective,
and causes significant imbalance across processes. A primary
factor causing the imbalance is the use of multiple halo layers
in this application, which has a major contribution to the
communication as well as computation time. A visualization
showing variability in computational loads across partitions in
a sample execution of MPAS-O is shown in Fig. 4. Variable
halo region cell counts and variability in the work per cell
contribute to an unbalanced work distribution.

It is known that graphs do not model communication volume
well. Hypergraphs, on the other hand, are able to model the
communication volume accurately [9], [10]. Hence, in our
work, we make use of hypergraph partitioning [10]-[13]. In
Sections III and IV we will address this problem of load
balance analyzing it in detail, and present our solutions.

C. Data Locality

Flops are free is the mantra of today’s large-scale paral-
lel systems. This refers to the observation that the primary
expense in nearly all scientific applications today is data
movement and not computations. This gap in the cost between
computation and data movement is only going to grow larger
in future. Hence, optimizing data movement (both volume
and bandwidth) is essential in obtaining high performance.
To affect this, the main strategies are (1) maximizing reuse of
data once it has been loaded (reordering data traversal, and
“communication-avoiding” algorithms) (2) maximizing band-
width via streaming access patterns amenable to acceleration
by hardware stream pre-fetchers.

To improve intra-node performance, it is essential that the
memory hierarchy (caches) is used efficiently in data accesses.

Data locality, both spatial and temporal, is an important factor
in maximizing efficiency. When operating on unstructured
grids, indirect and semi-random access to data presents a
number of challenges to maximizing cache reuse and attaining
high bandwidth. In this paper, we create data locality during
the application execution by reordering the input mesh data.
We use space-filling curves on the unstructured grid to reorder
the cells to make sure that spatially nearby cells are stored
nearby in the memory as well, which leads to effective use of
the cache. Researchers have previously used various strategies
for improving cache performance by introducing locality into
structured grids [14], [15], including space filling curves [16]
where although the authors consider unstructured data, they
work with meshes with high-degree of regularity. We address
this problem of intra-node data movement in Section V, dis-
cuss our solutions and present detailed performance analysis.

D. Computational Environment

The experiments described in this paper were executed on
Edison, a Cray XC30 “Cascade” system at NERSC. Each
Edison node has two 12-core “Ivy Bridge” sockets. Each
socket is attached to 32 GB of DDR3-1600 DRAM via a
memory controller providing about 44 GB/s of bandwidth.
Nodes are connected via Cray’s high-performance Aries (drag-
onfly) network. The dragonfly provides a scalable, low-latency
network with dynamic routing to maximize bandwidth. In all
the experiments presented in this paper, we run with 12 MPI
processes per socket.

The data used in the experiments is a 15 km resolution world
ocean grid. This grid has 1,848,103 cells and 5,509,887 edges.
Each cell has between 3 and 40 levels of data, representing a
normalized vertical depth of the ocean at that cell.

The MPAS framework utilizes unstructured meshes that can
be created in a variety of ways but are typically Spherical
Centroidal Voronoi Tessellations (SCVTs), as mentioned pre-
viously. Figure 2 shows the two cell meshes with overlapping
spatial layouts: the primary mesh (Voronoi), and the dual
mesh (Delaunay). Within each cell, edge, and vertex lie scalar
quantities (blue squares), vector quantities (red triangles),
and vorticity quantities (orange circles). After the mesh is
partitioned, a typical partition has cells, vertices and edges
explicitly assigned to that partition. During simulation initial-
ization, each partition is also assigned a halo region that may
contain multiple layers of cells from neighboring partitions.
The number of required halo layers is algorithm dependent,
based on the solver selected for the simulation.

The performance data presented in this paper has been
collected using the TAU profiler tool [17].

III. LOAD IMBALANCE ANALYSIS

MPAS-O uses the Metis tool to partition an input mesh
represented as a graph into partitions, each of which is
assigned to a different processor during simulations. The graph
partitioner attempts to balance the number of cells among all
the partitions, while minimizing the total number of edge cuts.
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Fig. 5. The load imbalance factors, Z, for a partitioning has a strong positive
correlation with the execution time. With different random number generator
seed values, Metis generates partitioning with a wide range of Z values and
shows high performance variability.

In solving the partial differential equations during simu-
lations, certain operators require information in neighboring
cells, which involves accessing additional data. These halo
regions represent substantially larger domains than the simple
edge cuts captured in the Metis partitioning. As remote pro-
cesses continually update this data, frequent “halo-exchanges”
are required. Thus, in order to improve MPAS-O performance,
a partitioner must be cognizant of this data movement. In this
section, we describe a compact set of experiments to explore
and analyze the performance variability of numerous Metis
partitioning solutions.

As a simple first step for understanding partition quality,
we use the Metis partitioner to partition a smaller grid with
240 km resolution representing the world ocean into 24
partitions. A number of different partitioning are generated
by using a different random number generator seed value
for each. Since Metis is based on heuristics making use
of randomization, each different seed results in a different
partitioning. For each partition thus obtained, we compute a
load imbalance factor, T, which denotes the maximum of the
number combined local and halo cells within a partition, such
that minimizing Z will effectively reduce the load imbalance.

Figure 5 shows the relationship between Z and the overall
MPAS-O execution time for a short 10-day simulation, with
43 different dispersed partitions obtained from Metis. Ob-
serve that with these partitions, the execution time correlates
strongly with Z, and shows an overall performance difference
of 17% between the minimum and maximum Z. It can be
concluded from this that the performance can be improved by
balancing the total number of local and halo cells per partition,
as expected. Given the large performance variation due to
different partitioning obtained using different seed values, a
straightforward and naive strategy to obtain a better quality
partitioning could be to run Metis a large number of times
and select a partitioning with the minimum Z value.

To demonstrate the computational and communication load
imbalance, due to a given Metis partitioning, across the
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Fig. 6. The variation in the compute versus communication cost for processes
during an example simulation using a partitioning obtained from Metis is
shown. Each spot represents a different process. This simulation consists
of 1536 processes, each owning a partition of the mesh. Communication
time varies by about 42% and computation by nearly 75% showing a
large imbalance. Detailed analysis shows that most of the communication
time consists of wait time, where a process waits for others to finish their
computations.

different processes during an execution, we show the variation
in the computation and communication time for each of the
process for a sample run in Fig. 6. It can be observed that
in this example the compute time and communication time
varies by nearly 75% and 42%, respectively, showing a large
imbalance.

IV. HYPERGRAPH-BASED HALO-AWARE PARTITIONER

Based on the above analysis it is clear that a different parti-
tioning approach is required to achieve better load balancing,
which would effectively balance the computation as well as the
actual communication distribution. We thus turn to partitioning
via hypergraphs using Patoh [18], which promises to model
the communication overhead more accurately.

As previously described, the communication overhead be-
tween processors is due to exchange of data in the ‘“halo”
regions, and due to the unstructured nature of grids, each
partition has variable number of halo cells dependent on
the partitioning. The effect of halo cells is magnified when
there are multiple halos required, as is the case in MPAS-O
that typically requires three halos layers per partition. Since
graph and hypergraph partitioning algorithms do not take these
halo cells into account, a different partitioning strategy is
necessary for a better balance. In order to develop a halo-
aware partitioning scheme, we first construct a performance
model for a given partitioning, and then use this model to
design our partitioning algorithm.

A. Computation and Communication Cost Modeling

The computational cost for a processor includes the cost
due to computations on the local cells and on the halo cells.
The cost may be different for a local cell and a halo cell. For p
total partitions, let a represent the ratio between computation



« model )
actual
o~
iPA
g ‘al
S 10° i
L. L
0 100 200 300 400 500 600

Partitioning Instance

Fig. 7. Cost prediction from the performance model compared with actual
runtime cost with respect to a total of about 700 different partitioning obtained
by using Patoh directly with different configurations.

performed on a halo and local cells. Given a partition k, we
model the computational cost, C,, as:

1 iEN, i€Hy,
Oazlv(m(zijwﬁa;wi) (1
where Ny is the set of local cell for partition k, Hj, is the set
of halo cells for partition k, and w; is weight of a cell i. F'(p)
is a function of p, since the cost depends on the number of
partitions as well.

The communication among processors can be viewed as
“halo-exchanges”, where the communication volume depends
on the number of halo cells for each partition, and the number
of neighbors each processor needs to communicate with. We
model the communication cost of a partition k as:

Cs = sz)};: + (miaX(cz‘) - Ck) 2)
where hy = |Hg|, by = number of neighbors of partition k,
¢y, is the total computational cost of partition k. Hence, the
second term represents the wait time for processor owning
partition k.

We perform extensive experiments with the actual cost of
representative simulations with varying concurrency and input
meshes, and use the obtained performance data to perform
a least-squares line fit in order to find the computation-
communication ratio, and the value of F'(p). From the data
collected from these experiments, we obtain a = 0.7 and
F(p) = log(4p). Figure 7, confirms that our predicted
performance modeling results accurately estimate the actual
application runtime for any given mesh partitioning.

B. Halo-aware Partitioning

To model multi-layered halos, we could naively use BFS
or DFS starting from each cell and identify all the £ distance
neighbors to construct k-layered halos. However, given that
graphs can be represented as sparse matrices, a more accurate
approach is to compute the k-th power of a matrix, through
sparse matrix-matrix multiplication (SpMM), which identifies
all nodes in the corresponding graph that are at a distance k
and connects them with an edge. Therefore, given A as the
sparse matrix representation of the input mesh, computing A*
determines the k£ halo layer cells. We use the CombBLAS

package to perform the SpMM operations [19]. Aggregating
the edges from A, A2, ..., A* identifies all the halo cells for
any given partitioning.

However, because the halo cells cannot be identified until
the partitioning has been performed, their cost cannot be added
for balancing during the partitioning. Therefore, our new par-
titioning strategy follows an iterative approach. The strategy
is designed as a Monte-Carlo based partitioning scheme that
iteratively refines the partitioning using total cost computed for
previous iteration’s partitioning. Each iteration, thus, includes
a call to the hypergraph partitioning tool Patoh. This scheme
proceeds as follows:

1) Construct sparse matrix A representing the input mesh.

2) Compute A%, ... A* to identify potential halo cells for
each cell.

3) Construct a hypergraph representation H of the sparse
matrix A;..., which is an aggregation of A, A2, ... | AF,

4) TIterate over the following until convergence:

a) Compute a partitioning P; of the hypergraph #,;.

b) Construct halos for partitioning F;.

c) With P;, use the performance model to calculate
total cost prediction C}, for each partition k£ and
assign corresponding weights to the cells (distribut-
ing the cost of halo cells among the partition cells),
and hence compute the partition weights W.

d) Calculate imbalance factor, to be used as “fitness”

value, f; = (1 — %;?{’; ((‘;Vvi)) .

e) If the new fitness f; is less than f;_1, accept this
partitioning P;.
f) Otherwise, calculate the Metropolis-Hastings prob-
F—1)—Fi

ability m = min | l,e™ 7 , and accept the

partitioning with this probability.

g) If the partitioning is accepted, then update the
hypergraph with the new cell weights constructing
H(i+1)» and continue with the next iteration unless
convergence was reached.

h) Otherwise, reject the partitioning by setting P; =
P,y and f; = f;_1, and continue to the next
iteration.

5) Output the last accepted partitioning as the result.

The above procedure ensures that the cost due to halos
are taken into account by assigning weights to the cells and
refining the partitioning. Experimental results show that the
convergence is reached quickly, generally within 10 iterations.
The effect of the cost/weight distribution and the resulting
improved partitioning can be seen in the visualization of
Figure 8, showing 384 partitions.

C. Variable Cell Weights

In general a mesh may have variable cell weights. For
MPAS-O the cells in the input mesh have variable depths,
representing the ocean depth at the corresponding location.
This introduces another opportunity for optimization, since the
computational cost of a cell is proportional to the number of
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Fig. 8. Comparing the weights of each partition visually. The graph represents a partitioning, with nodes as individual partitions with edges between adjacent
partitions. Weight of a partition is depicted in its color — darker means higher weight and lighter means lower weight. (Left) The original graph partitioning
obtained from Metis. (Right) A new partitioning obtained from our halo-aware hypergraph partitioning strategy. The variation in partition weights can be

clearly seen to be much higher in original compared to the new partitioning.

depth layers it defines (varying between 3-40). To take this
into account, variable weights corresponding to the cell depth
are assigned to each cell while calculating the cost using the
performance model. The next subsection presents the impact
of our depth and halo-aware partitioning strategies compared
with assigning the original partitioning.

D. Performance Results

We perform experiments on the Edison system (described
in Section II-D), using a 15 km resolution mesh to simulate
10 days, with the following four partitioning strategies:

1) The original graph partitioning obtained using Metis.

2) Direct hypergraph partitioning obtained using Patoh.

3) Partitioning obtained from our halo-aware partitioner.

4) Partitioning obtained from our depth and halo-aware

partitioner.

Each partitioning used in the following experiments was se-
lected from a sample size of 10 obtained from the correspond-
ing partitioning scheme, on the basis of best performance.
The performance as communication time and computation
time of each run is shown in Figures 9 and 10, respectively.
These plots capture the maximum to minimum range of these
times. Observe that the communication time drops signifi-
cantly for the partitions obtained from our new partitioners,
with a small increase in the computation time. This is because
the new partitioner attempt to combine the computation and
communication cost, and better overall cost may be achieved
by increasing the maximum compute time and decreasing the
maximum communication time. It should be noted that these
plots do not show the correspondence between the minimum
and maximum of computation and communication time for
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Fig. 9. The minimum to maximum range of time involved in communication
related tasks among all processes in each run is shown. Comparison of the
four types of partitioning is depicted for varying number of processes. The
number of partitions is equal to number of processors, and each partition is
assigned to a different processor.

each process, and total time taken is not simply the sum of
the two.

The total execution time taken by each run is shown in
Figure 11, where it can be seen that at 12,288 cores the
performance improvement of our scheme is more than 2x
over the base graph partitioning (as well as direct hypergraph
partitioning). Lower concurrencies also show performance
improvements, although less dramatic. Note that due to the
significant reduction in communication costs, our partitioning
scheme improves performance as well as scalability.
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Fig. 11.  The total application execution times with varying number of

processes are shown for each of the four types of partitioning. The number
of partitions is equal to number of processors, and each partition is assigned
to a different processor. Corresponding communication time is also shown in
lighter color for reference.

V. ORDERING UNSTRUCTURED DATA

An unstructured grid implicitly means that the data layout
is also unstructured, which causes the involved data structures
to be mapped to the memory in no particular order. There is
almost no locality, leading to inefficient use of the memory
hierarchies. In our case, the meshes being considered have
no regularity, and no assumptions regarding the data ordering
can be made. Since maintaining locality is essential for high
performance in presence of memory hierarchies, we need to
create spatial data locality by re-arranging data so that the data
with temporal locality reside nearby in the memory as much
as possible. Currently, since the MPAS-O mesh can be directly
represented as a sparse matrix, to create locality, its generation
process follows a cell ordering called the reverse Cuthill-

McKee ordering [20], which is an algorithm for permuting a
symmetric sparse matrix to convert it into a band matrix with
a small bandwidth. We will show below that even though it
follows some locality pattern, its performance is nearly as bad
as a complete random ordering.

A. Space Filling Curves

Space Filling Curves (SFCs) [21], [22] are generally used to
map a higher dimensional data on to a one-dimensional line.
A number of SFCs have been developed and have proven to
be widely applicable for solving scientific problems as well
as for improving performance of applications. In our case,
SFCs are an obvious choice to explore for the creation of data
locality. But due to the lack of any regularity in the underlying
grid, SFCs cannot be directly applied since SFCs are defined
for regular and/or repeating grid patterns. But fortunately,
the SCVT mesh under consideration exists in 3-dimensional
space. Hence, we can overlay a structured grid on top of the
unstructured mesh, for the purposes of reordering with SFCs.

Given an unstructured mesh defined in a 3-dimensional
space, we represent each cell as a single point at the position
of its centroid. Then, we define an octree based structured
rectangular grid covering all these points. This grid is decom-
posed recursively such that each point resides in a separate
leaf node. Once we have this representation, we simply order
these octree nodes according to a SFC on this structure. This
leads to an ordering of the points which represent the cells of
the unstructured mesh. We then simply reorder these cells in
the data file according to this constructed ordering.

Due to the definition of our mesh on a spherical surface,
and with discontinuities, the application of the above strategy
to the complete mesh at once causes significant number of
“jumps” between cells, along the SFCs, which are not spatially
close, but appear next to each other in the ordering. Hence,
instead of reordering the whole mesh, we apply the ordering
to each partition separately once partitioning has been done.
This minimizes the number of such jumps and allows for better
data locality.

We consider several SFCs in order to evaluate their affect on
simulation performance, and here we present two such SFC
based orderings: Hilbert curve, and Morton ordering (or, Z-
SFC). Examples of the ordering of the mesh cells produced
by these curves is shown in Fig. 12. Also shown in the same
figure are our two base cases: the original reverse Cuthill-
McKee ordering, and a randomized ordering. In addition to
ordering the cells, we follow the same scheme to reorder the
other data elements in the mesh: the vertices and the edges
(see Fig. 2).

B. Performance Impact

We reorder the mesh data elements according to the above
described scheme and perform experiments to analyze the
performance improvements they create. In Fig. 13, the results
are summarized as the total application execution time taken
using each of the following four mesh orderings:

1) Completely randomized ordering, for reference.
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Fig. 12. A part of the mesh covering Earth’s oceans is shown for each of
the four cell orderings: random (top-left), original (top-right), hilbert (bottom-
left) and morton (bottom-right). The ordering of the cells is shown using white
lines connecting cells.
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Fig. 13. Scaling of the total application execution time for the four mesh

data orderings is shown. Although at lower concurrency, the performance
improvement is obvious for SFC-based ordering, their benefits diminish at
higher concurrency due to small sized partitions.

2) Original Cuthill-McKee ordering, as the base case.
3) Morton SFC ordering.
4) Hilbert SFC ordering.

All these experiments have been performed using the depth
and halo-aware partitioning obtained from previous section.
Hence, the observed benefits are on top of the previous
improvements. The benefit of introducing data locality into the
mesh by using the two SFCs are clearly observed with smaller
number of partitions, and the performance gain gradually
diminishes. Since this is strong scaling, the observed behavior
is expected because as the partition size grows smaller, more
of the mesh data can fit into the caches, which makes their

ordering not as important. Nevertheless, the benefits will be
more profound in high resolution meshes as they scale to even
larger number of processors.
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Fig. 14. Total number of L1-cache misses during the application execution
with the four mesh data orderings is shown. The savings in data movement
due to SFC-based ordering can be seen.
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Fig. 15. Total number of L2-cache misses during the application execution

with the four mesh data orderings is shown. The savings in data movement
due to SFC-based ordering can be seen, being more significant at lower
concurrencies as the data fits into the cache.

Further, to analyze how the cache behavior is affected by the
reordering, we collect cache statistics using hardware counters.
The total number of cache misses for L1, L2, L3 caches and
TLB, during the execution of the applications are shown in
Fig. 14 to Fig. 17, respectively. These show that ordering the
data is definitely beneficial for improving cache performance.
Apart from reducing the execution time with reduced cache
misses, the minimization of data movement also leads to lower
power consumption.

VI. COMPUTATION AND COMMUNICATION AVOIDANCE

We now explore the application of computation and commu-
nication avoidance techniques to the MPAS-O model. When
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Fig. 16. Total number of L3-cache misses during the application execution
with the four mesh data orderings is shown. The savings in data movement
due to SFC-based ordering can be seen, being more significant at lower
concurrencies as the data completely fits into the cache.
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Fig. 17. Total number of TLB misses during the application execution with
the four mesh data orderings is shown. The savings in data movement due to
SFC-based ordering can be seen.

decomposed, each processor is required to correctly compute
on a subset of the total domain. Some of the operators
used to solve MPAS-O’s equations require information from
neighboring elements (i.e. cells, edges, and vertices) which
might be stored in the regions halo layers. During the course of
a time step, MPAS-O will compute over all halo layers without
requiring any communication. However, prior to advancing
to a new time step, MPAS-O requires an update of the halo
layers to ensure data contained in the halo is identical to data
for those same elements on other processors. We implement
a technique to modify the general computation and commu-
nication pattern for one particular segment of the MPAS-
O code. This technique eliminates redundant computation
and communication with k layered halos. by executing the
following during each time step:

1) For k steps, where in i-th step, compute information on
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Fig. 18. Speedups achieved by the computation and communication avoiding
technique for the optimized code segment (top) and the overall application
execution time (bottom) are shown. The speedup obtained with the Morton
ordered mesh and the optimized code is up to 1.34x.

local cells plus (k — ¢ — 1) halo layers.
2) Perform a halo-exchange operation with all k& layers.

Each step corrupts the data in the (kK — ¢ + 1)-th halo layer,
hence, a halo-exchange is performed only after all halo layers
have corrupted data. This scheme avoids communication after
each computation step, and performs one halo-exchange per k
steps. Apart from avoiding communication, this scheme also
avoids redundant computations on the halo layers which have
corrupted information.

The results of the redundancy avoidance optimizations ob-
tained from experiments on Edison are shown in Fig, 18. Here,
“original” refers to the original 15 km resolution mesh, and
“Morton” represents our SFC reordered mesh as described
in the previous section. We compare the performance with
optimizations described above using these two meshes, against
the original code (unoptimized). The speedups observed for
these two cases are shown in Fig. 18.

Observe that the achieved overall application speedup due to
this optimization, over the baseline code is up to 1.13x, while
the speedup observed for just the optimized code segment is



1.4x. Additionally, the combined speedup from Morton order-
ing in conjunction with the redundancy avoidance optimization
is up to 1.34x for the overall execution time and 1.7x for the
optimized code segment.

Since this technique removes two-thirds of communication
in this code segment, the achieved speedup improves with
increasing concurrency for strong scaling.

VII. CONCLUSIONS

In this work we address two of the primary challenges of
improving load balance and data locality, when faced with
computations over unstructured meshes. We demonstrated that
distributing a work load across processors with an unstructured
mesh partitioning, it is necessary to consider the computation
and communication costs due to any halos used in order to
reduce overall communication and gain higher performance.
We therefore devised a new hypergraph-based depth and halo-
aware partitioning strategy, which allowed significant improve-
ment for MPAS-O at scaling, attaining more than 2x speedup
at scale compared with the original partitioning strategy.

We additionally applied an SFC-based ordering to the
unstructured mesh by mapping it to a 3D regular domain,
showing that ordering is essential to reduce data movement
when the data size is significantly larger than the system cache
size. Finally, we explored the application of communication
avoidance techniques to a segment of MPAS-O’s internal
workload, showing how portions of the model can benefit from
this technique.
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