/storage/packages/gcc/5.3.0/include/c++/5.3.0/bits/stl_vector.h

Line% of fetchesSource
1  
// Vector implementation -*- C++ -*-
2  
3  
// Copyright (C) 2001-2015 Free Software Foundation, Inc.
4  
//
5  
// This file is part of the GNU ISO C++ Library.  This library is free
6  
// software; you can redistribute it and/or modify it under the
7  
// terms of the GNU General Public License as published by the
8  
// Free Software Foundation; either version 3, or (at your option)
9  
// any later version.
10  
11  
// This library is distributed in the hope that it will be useful,
12  
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13  
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  
// GNU General Public License for more details.
15  
16  
// Under Section 7 of GPL version 3, you are granted additional
17  
// permissions described in the GCC Runtime Library Exception, version
18  
// 3.1, as published by the Free Software Foundation.
19  
20  
// You should have received a copy of the GNU General Public License and
21  
// a copy of the GCC Runtime Library Exception along with this program;
22  
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23  
// <http://www.gnu.org/licenses/>.
24  
25  
/*
26  
 *
27  
 * Copyright (c) 1994
28  
 * Hewlett-Packard Company
29  
 *
30  
 * Permission to use, copy, modify, distribute and sell this software
31  
 * and its documentation for any purpose is hereby granted without fee,
32  
 * provided that the above copyright notice appear in all copies and
33  
 * that both that copyright notice and this permission notice appear
34  
 * in supporting documentation.  Hewlett-Packard Company makes no
35  
 * representations about the suitability of this software for any
36  
 * purpose.  It is provided "as is" without express or implied warranty.
37  
 *
38  
 *
39  
 * Copyright (c) 1996
40  
 * Silicon Graphics Computer Systems, Inc.
41  
 *
42  
 * Permission to use, copy, modify, distribute and sell this software
43  
 * and its documentation for any purpose is hereby granted without fee,
44  
 * provided that the above copyright notice appear in all copies and
45  
 * that both that copyright notice and this permission notice appear
46  
 * in supporting documentation.  Silicon Graphics makes no
47  
 * representations about the suitability of this  software for any
48  
 * purpose.  It is provided "as is" without express or implied warranty.
49  
 */
50  
51  
/** @file bits/stl_vector.h
52  
 *  This is an internal header file, included by other library headers.
53  
 *  Do not attempt to use it directly. @headername{vector}
54  
 */
55  
56  
#ifndef _STL_VECTOR_H
57  
#define _STL_VECTOR_H 1
58  
59  
#include <bits/stl_iterator_base_funcs.h>
60  
#include <bits/functexcept.h>
61  
#include <bits/concept_check.h>
62  
#if __cplusplus >= 201103L
63  
#include <initializer_list>
64  
#endif
65  
66  
namespace std _GLIBCXX_VISIBILITY(default)
67  
{
68  
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69  
70  
  /// See bits/stl_deque.h's _Deque_base for an explanation.
71  
  template<typename _Tp, typename _Alloc>
72  
    struct _Vector_base
73  
    {
74  
      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
75  
        rebind<_Tp>::other _Tp_alloc_type;
76  
      typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
77  
       	pointer;
78  
79  
      struct _Vector_impl 
80  
      : public _Tp_alloc_type
81  
      {
82  
	pointer _M_start;
83  
	pointer _M_finish;
84  
	pointer _M_end_of_storage;
85  
86  
	_Vector_impl()
87  
	: _Tp_alloc_type(), _M_start(), _M_finish(), _M_end_of_storage()
88  
	{ }
89  
90  
	_Vector_impl(_Tp_alloc_type const& __a) _GLIBCXX_NOEXCEPT
91  
	: _Tp_alloc_type(__a), _M_start(), _M_finish(), _M_end_of_storage()
92  
	{ }
93  
94  
#if __cplusplus >= 201103L
95  
	_Vector_impl(_Tp_alloc_type&& __a) noexcept
96  
	: _Tp_alloc_type(std::move(__a)),
97  
	  _M_start(), _M_finish(), _M_end_of_storage()
98  
	{ }
99  
#endif
100  
101  
	void _M_swap_data(_Vector_impl& __x) _GLIBCXX_NOEXCEPT
102  
	{
103  
	  std::swap(_M_start, __x._M_start);
104  
	  std::swap(_M_finish, __x._M_finish);
105  
	  std::swap(_M_end_of_storage, __x._M_end_of_storage);
106  
	}
107  
      };
108  
      
109  
    public:
110  
      typedef _Alloc allocator_type;
111  
112  
      _Tp_alloc_type&
113  
      _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
114  
      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
115  
116  
      const _Tp_alloc_type&
117  
      _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
118  
      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
119  
120  
      allocator_type
121  
      get_allocator() const _GLIBCXX_NOEXCEPT
122  
      { return allocator_type(_M_get_Tp_allocator()); }
123  
124  
      _Vector_base()
125  
      : _M_impl() { }
126  
127  
      _Vector_base(const allocator_type& __a) _GLIBCXX_NOEXCEPT
128  
      : _M_impl(__a) { }
129  
130  
      _Vector_base(size_t __n)
131  
      : _M_impl()
132  
      { _M_create_storage(__n); }
133  
134  
      _Vector_base(size_t __n, const allocator_type& __a)
135  
      : _M_impl(__a)
136  
      { _M_create_storage(__n); }
137  
138  
#if __cplusplus >= 201103L
139  
      _Vector_base(_Tp_alloc_type&& __a) noexcept
140  
      : _M_impl(std::move(__a)) { }
141  
142  
      _Vector_base(_Vector_base&& __x) noexcept
143  
      : _M_impl(std::move(__x._M_get_Tp_allocator()))
144  
      { this->_M_impl._M_swap_data(__x._M_impl); }
145  
146  
      _Vector_base(_Vector_base&& __x, const allocator_type& __a)
147  
      : _M_impl(__a)
148  
      {
149  
	if (__x.get_allocator() == __a)
150  
	  this->_M_impl._M_swap_data(__x._M_impl);
151  
	else
152  
	  {
153  
	    size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
154  
	    _M_create_storage(__n);
155  
	  }
156  
      }
157  
#endif
158  
159  
      ~_Vector_base() _GLIBCXX_NOEXCEPT
160  
      { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
161  
		      - this->_M_impl._M_start); }
162  
163  
    public:
164  
      _Vector_impl _M_impl;
165  
166  
      pointer
167  
      _M_allocate(size_t __n)
168  
      {
169  
	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
170  
	return __n != 0 ? _Tr::allocate(_M_impl, __n) : pointer();
171  
      }
172  
173  
      void
174  
      _M_deallocate(pointer __p, size_t __n)
175  
      {
176  
	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
177  
	if (__p)
178  
	  _Tr::deallocate(_M_impl, __p, __n);
179  
      }
180  
181  
    private:
182  
      void
183  
      _M_create_storage(size_t __n)
184  
      {
185  
	this->_M_impl._M_start = this->_M_allocate(__n);
186  
	this->_M_impl._M_finish = this->_M_impl._M_start;
187  
	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
188  
      }
189  
    };
190  
191  
192  
  /**
193  
   *  @brief A standard container which offers fixed time access to
194  
   *  individual elements in any order.
195  
   *
196  
   *  @ingroup sequences
197  
   *
198  
   *  @tparam _Tp  Type of element.
199  
   *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
200  
   *
201  
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
202  
   *  <a href="tables.html#66">reversible container</a>, and a
203  
   *  <a href="tables.html#67">sequence</a>, including the
204  
   *  <a href="tables.html#68">optional sequence requirements</a> with the
205  
   *  %exception of @c push_front and @c pop_front.
206  
   *
207  
   *  In some terminology a %vector can be described as a dynamic
208  
   *  C-style array, it offers fast and efficient access to individual
209  
   *  elements in any order and saves the user from worrying about
210  
   *  memory and size allocation.  Subscripting ( @c [] ) access is
211  
   *  also provided as with C-style arrays.
212  
  */
213  
  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
214  
    class vector : protected _Vector_base<_Tp, _Alloc>
215  
    {
216  
      // Concept requirements.
217  
      typedef typename _Alloc::value_type                _Alloc_value_type;
218  
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
219  
      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
220  
      
221  
      typedef _Vector_base<_Tp, _Alloc>			 _Base;
222  
      typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
223  
      typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>  _Alloc_traits;
224  
225  
    public:
226  
      typedef _Tp					 value_type;
227  
      typedef typename _Base::pointer                    pointer;
228  
      typedef typename _Alloc_traits::const_pointer      const_pointer;
229  
      typedef typename _Alloc_traits::reference          reference;
230  
      typedef typename _Alloc_traits::const_reference    const_reference;
231  
      typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
232  
      typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
233  
      const_iterator;
234  
      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
235  
      typedef std::reverse_iterator<iterator>		 reverse_iterator;
236  
      typedef size_t					 size_type;
237  
      typedef ptrdiff_t					 difference_type;
238  
      typedef _Alloc                        		 allocator_type;
239  
240  
    protected:
241  
      using _Base::_M_allocate;
242  
      using _Base::_M_deallocate;
243  
      using _Base::_M_impl;
244  
      using _Base::_M_get_Tp_allocator;
245  
246  
    public:
247  
      // [23.2.4.1] construct/copy/destroy
248  
      // (assign() and get_allocator() are also listed in this section)
249  
250  
      /**
251  
       *  @brief  Creates a %vector with no elements.
252  
       */
253  
      vector()
254  
#if __cplusplus >= 201103L
255  
      noexcept(is_nothrow_default_constructible<_Alloc>::value)
256  
#endif
257  
      : _Base() { }
258  
259  
      /**
260  
       *  @brief  Creates a %vector with no elements.
261  
       *  @param  __a  An allocator object.
262  
       */
263  
      explicit
264  
      vector(const allocator_type& __a) _GLIBCXX_NOEXCEPT
265  
      : _Base(__a) { }
266  
267  
#if __cplusplus >= 201103L
268  
      /**
269  
       *  @brief  Creates a %vector with default constructed elements.
270  
       *  @param  __n  The number of elements to initially create.
271  
       *  @param  __a  An allocator.
272  
       *
273  
       *  This constructor fills the %vector with @a __n default
274  
       *  constructed elements.
275  
       */
276  
      explicit
277  
      vector(size_type __n, const allocator_type& __a = allocator_type())
278  
      : _Base(__n, __a)
279  
      { _M_default_initialize(__n); }
280  
281  
      /**
282  
       *  @brief  Creates a %vector with copies of an exemplar element.
283  
       *  @param  __n  The number of elements to initially create.
284  
       *  @param  __value  An element to copy.
285  
       *  @param  __a  An allocator.
286  
       *
287  
       *  This constructor fills the %vector with @a __n copies of @a __value.
288  
       */
289  
      vector(size_type __n, const value_type& __value,
290  
	     const allocator_type& __a = allocator_type())
291  
      : _Base(__n, __a)
292  
      { _M_fill_initialize(__n, __value); }
293  
#else
294  
      /**
295  
       *  @brief  Creates a %vector with copies of an exemplar element.
296  
       *  @param  __n  The number of elements to initially create.
297  
       *  @param  __value  An element to copy.
298  
       *  @param  __a  An allocator.
299  
       *
300  
       *  This constructor fills the %vector with @a __n copies of @a __value.
301  
       */
302  
      explicit
303  
      vector(size_type __n, const value_type& __value = value_type(),
304  
	     const allocator_type& __a = allocator_type())
305  
      : _Base(__n, __a)
306  
      { _M_fill_initialize(__n, __value); }
307  
#endif
308  
309  
      /**
310  
       *  @brief  %Vector copy constructor.
311  
       *  @param  __x  A %vector of identical element and allocator types.
312  
       *
313  
       *  The newly-created %vector uses a copy of the allocation
314  
       *  object used by @a __x.  All the elements of @a __x are copied,
315  
       *  but any extra memory in
316  
       *  @a __x (for fast expansion) will not be copied.
317  
       */
318  
      vector(const vector& __x)
319  
      : _Base(__x.size(),
320  
        _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
321  
      { this->_M_impl._M_finish =
322  
	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
323  
				      this->_M_impl._M_start,
324  
				      _M_get_Tp_allocator());
325  
      }
326  
327  
#if __cplusplus >= 201103L
328  
      /**
329  
       *  @brief  %Vector move constructor.
330  
       *  @param  __x  A %vector of identical element and allocator types.
331  
       *
332  
       *  The newly-created %vector contains the exact contents of @a __x.
333  
       *  The contents of @a __x are a valid, but unspecified %vector.
334  
       */
335  
      vector(vector&& __x) noexcept
336  
      : _Base(std::move(__x)) { }
337  
338  
      /// Copy constructor with alternative allocator
339  
      vector(const vector& __x, const allocator_type& __a)
340  
      : _Base(__x.size(), __a)
341  
      { this->_M_impl._M_finish =
342  
	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
343  
				      this->_M_impl._M_start,
344  
				      _M_get_Tp_allocator());
345  
      }
346  
347  
      /// Move constructor with alternative allocator
348  
      vector(vector&& __rv, const allocator_type& __m)
349  
      noexcept(_Alloc_traits::_S_always_equal())
350  
      : _Base(std::move(__rv), __m)
351  
      {
352  
	if (__rv.get_allocator() != __m)
353  
	  {
354  
	    this->_M_impl._M_finish =
355  
	      std::__uninitialized_move_a(__rv.begin(), __rv.end(),
356  
					  this->_M_impl._M_start,
357  
					  _M_get_Tp_allocator());
358  
	    __rv.clear();
359  
	  }
360  
      }
361  
362  
      /**
363  
       *  @brief  Builds a %vector from an initializer list.
364  
       *  @param  __l  An initializer_list.
365  
       *  @param  __a  An allocator.
366  
       *
367  
       *  Create a %vector consisting of copies of the elements in the
368  
       *  initializer_list @a __l.
369  
       *
370  
       *  This will call the element type's copy constructor N times
371  
       *  (where N is @a __l.size()) and do no memory reallocation.
372  
       */
373  
      vector(initializer_list<value_type> __l,
374  
	     const allocator_type& __a = allocator_type())
375  
      : _Base(__a)
376  
      {
377  
	_M_range_initialize(__l.begin(), __l.end(),
378  
			    random_access_iterator_tag());
379  
      }
380  
#endif
381  
382  
      /**
383  
       *  @brief  Builds a %vector from a range.
384  
       *  @param  __first  An input iterator.
385  
       *  @param  __last  An input iterator.
386  
       *  @param  __a  An allocator.
387  
       *
388  
       *  Create a %vector consisting of copies of the elements from
389  
       *  [first,last).
390  
       *
391  
       *  If the iterators are forward, bidirectional, or
392  
       *  random-access, then this will call the elements' copy
393  
       *  constructor N times (where N is distance(first,last)) and do
394  
       *  no memory reallocation.  But if only input iterators are
395  
       *  used, then this will do at most 2N calls to the copy
396  
       *  constructor, and logN memory reallocations.
397  
       */
398  
#if __cplusplus >= 201103L
399  
      template<typename _InputIterator,
400  
	       typename = std::_RequireInputIter<_InputIterator>>
401  
        vector(_InputIterator __first, _InputIterator __last,
402  
	       const allocator_type& __a = allocator_type())
403  
	: _Base(__a)
404  
        { _M_initialize_dispatch(__first, __last, __false_type()); }
405  
#else
406  
      template<typename _InputIterator>
407  
        vector(_InputIterator __first, _InputIterator __last,
408  
	       const allocator_type& __a = allocator_type())
409  
	: _Base(__a)
410  
        {
411  
	  // Check whether it's an integral type.  If so, it's not an iterator.
412  
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
413  
	  _M_initialize_dispatch(__first, __last, _Integral());
414  
	}
415  
#endif
416  
417  
      /**
418  
       *  The dtor only erases the elements, and note that if the
419  
       *  elements themselves are pointers, the pointed-to memory is
420  
       *  not touched in any way.  Managing the pointer is the user's
421  
       *  responsibility.
422  
       */
423  
      ~vector() _GLIBCXX_NOEXCEPT
424  
      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
425  
		      _M_get_Tp_allocator()); }
426  
427  
      /**
428  
       *  @brief  %Vector assignment operator.
429  
       *  @param  __x  A %vector of identical element and allocator types.
430  
       *
431  
       *  All the elements of @a __x are copied, but any extra memory in
432  
       *  @a __x (for fast expansion) will not be copied.  Unlike the
433  
       *  copy constructor, the allocator object is not copied.
434  
       */
435  
      vector&
436  
      operator=(const vector& __x);
437  
438  
#if __cplusplus >= 201103L
439  
      /**
440  
       *  @brief  %Vector move assignment operator.
441  
       *  @param  __x  A %vector of identical element and allocator types.
442  
       *
443  
       *  The contents of @a __x are moved into this %vector (without copying,
444  
       *  if the allocators permit it).
445  
       *  @a __x is a valid, but unspecified %vector.
446  
       */
447  
      vector&
448  
      operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
449  
      {
450  
        constexpr bool __move_storage =
451  
          _Alloc_traits::_S_propagate_on_move_assign()
452  
          || _Alloc_traits::_S_always_equal();
453  
        _M_move_assign(std::move(__x),
454  
                       integral_constant<bool, __move_storage>());
455  
	return *this;
456  
      }
457  
458  
      /**
459  
       *  @brief  %Vector list assignment operator.
460  
       *  @param  __l  An initializer_list.
461  
       *
462  
       *  This function fills a %vector with copies of the elements in the
463  
       *  initializer list @a __l.
464  
       *
465  
       *  Note that the assignment completely changes the %vector and
466  
       *  that the resulting %vector's size is the same as the number
467  
       *  of elements assigned.  Old data may be lost.
468  
       */
469  
      vector&
470  
      operator=(initializer_list<value_type> __l)
471  
      {
472  
	this->assign(__l.begin(), __l.end());
473  
	return *this;
474  
      }
475  
#endif
476  
477  
      /**
478  
       *  @brief  Assigns a given value to a %vector.
479  
       *  @param  __n  Number of elements to be assigned.
480  
       *  @param  __val  Value to be assigned.
481  
       *
482  
       *  This function fills a %vector with @a __n copies of the given
483  
       *  value.  Note that the assignment completely changes the
484  
       *  %vector and that the resulting %vector's size is the same as
485  
       *  the number of elements assigned.  Old data may be lost.
486  
       */
487  
      void
488  
      assign(size_type __n, const value_type& __val)
489  
      { _M_fill_assign(__n, __val); }
490  
491  
      /**
492  
       *  @brief  Assigns a range to a %vector.
493  
       *  @param  __first  An input iterator.
494  
       *  @param  __last   An input iterator.
495  
       *
496  
       *  This function fills a %vector with copies of the elements in the
497  
       *  range [__first,__last).
498  
       *
499  
       *  Note that the assignment completely changes the %vector and
500  
       *  that the resulting %vector's size is the same as the number
501  
       *  of elements assigned.  Old data may be lost.
502  
       */
503  
#if __cplusplus >= 201103L
504  
      template<typename _InputIterator,
505  
	       typename = std::_RequireInputIter<_InputIterator>>
506  
        void
507  
        assign(_InputIterator __first, _InputIterator __last)
508  
        { _M_assign_dispatch(__first, __last, __false_type()); }
509  
#else
510  
      template<typename _InputIterator>
511  
        void
512  
        assign(_InputIterator __first, _InputIterator __last)
513  
        {
514  
	  // Check whether it's an integral type.  If so, it's not an iterator.
515  
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
516  
	  _M_assign_dispatch(__first, __last, _Integral());
517  
	}
518  
#endif
519  
520  
#if __cplusplus >= 201103L
521  
      /**
522  
       *  @brief  Assigns an initializer list to a %vector.
523  
       *  @param  __l  An initializer_list.
524  
       *
525  
       *  This function fills a %vector with copies of the elements in the
526  
       *  initializer list @a __l.
527  
       *
528  
       *  Note that the assignment completely changes the %vector and
529  
       *  that the resulting %vector's size is the same as the number
530  
       *  of elements assigned.  Old data may be lost.
531  
       */
532  
      void
533  
      assign(initializer_list<value_type> __l)
534  
      { this->assign(__l.begin(), __l.end()); }
535  
#endif
536  
537  
      /// Get a copy of the memory allocation object.
538  
      using _Base::get_allocator;
539  
540  
      // iterators
541  
      /**
542  
       *  Returns a read/write iterator that points to the first
543  
       *  element in the %vector.  Iteration is done in ordinary
544  
       *  element order.
545  
       */
546  
      iterator
547  
      begin() _GLIBCXX_NOEXCEPT
548  
      { return iterator(this->_M_impl._M_start); }
549  
550  
      /**
551  
       *  Returns a read-only (constant) iterator that points to the
552  
       *  first element in the %vector.  Iteration is done in ordinary
553  
       *  element order.
554  
       */
555  
      const_iterator
556  
      begin() const _GLIBCXX_NOEXCEPT
557  
      { return const_iterator(this->_M_impl._M_start); }
558  
559  
      /**
560  
       *  Returns a read/write iterator that points one past the last
561  
       *  element in the %vector.  Iteration is done in ordinary
562  
       *  element order.
563  
       */
564  
      iterator
565  
      end() _GLIBCXX_NOEXCEPT
566  
      { return iterator(this->_M_impl._M_finish); }
567  
568  
      /**
569  
       *  Returns a read-only (constant) iterator that points one past
570  
       *  the last element in the %vector.  Iteration is done in
571  
       *  ordinary element order.
572  
       */
573  
      const_iterator
574  
      end() const _GLIBCXX_NOEXCEPT
575  
      { return const_iterator(this->_M_impl._M_finish); }
576  
577  
      /**
578  
       *  Returns a read/write reverse iterator that points to the
579  
       *  last element in the %vector.  Iteration is done in reverse
580  
       *  element order.
581  
       */
582  
      reverse_iterator
583  
      rbegin() _GLIBCXX_NOEXCEPT
584  
      { return reverse_iterator(end()); }
585  
586  
      /**
587  
       *  Returns a read-only (constant) reverse iterator that points
588  
       *  to the last element in the %vector.  Iteration is done in
589  
       *  reverse element order.
590  
       */
591  
      const_reverse_iterator
592  
      rbegin() const _GLIBCXX_NOEXCEPT
593  
      { return const_reverse_iterator(end()); }
594  
595  
      /**
596  
       *  Returns a read/write reverse iterator that points to one
597  
       *  before the first element in the %vector.  Iteration is done
598  
       *  in reverse element order.
599  
       */
600  
      reverse_iterator
601  
      rend() _GLIBCXX_NOEXCEPT
602  
      { return reverse_iterator(begin()); }
603  
604  
      /**
605  
       *  Returns a read-only (constant) reverse iterator that points
606  
       *  to one before the first element in the %vector.  Iteration
607  
       *  is done in reverse element order.
608  
       */
609  
      const_reverse_iterator
610  
      rend() const _GLIBCXX_NOEXCEPT
611  
      { return const_reverse_iterator(begin()); }
612  
613  
#if __cplusplus >= 201103L
614  
      /**
615  
       *  Returns a read-only (constant) iterator that points to the
616  
       *  first element in the %vector.  Iteration is done in ordinary
617  
       *  element order.
618  
       */
619  
      const_iterator
620  
      cbegin() const noexcept
621  
      { return const_iterator(this->_M_impl._M_start); }
622  
623  
      /**
624  
       *  Returns a read-only (constant) iterator that points one past
625  
       *  the last element in the %vector.  Iteration is done in
626  
       *  ordinary element order.
627  
       */
628  
      const_iterator
629  
      cend() const noexcept
630  
      { return const_iterator(this->_M_impl._M_finish); }
631  
632  
      /**
633  
       *  Returns a read-only (constant) reverse iterator that points
634  
       *  to the last element in the %vector.  Iteration is done in
635  
       *  reverse element order.
636  
       */
637  
      const_reverse_iterator
638  
      crbegin() const noexcept
639  
      { return const_reverse_iterator(end()); }
640  
641  
      /**
642  
       *  Returns a read-only (constant) reverse iterator that points
643  
       *  to one before the first element in the %vector.  Iteration
644  
       *  is done in reverse element order.
645  
       */
646  
      const_reverse_iterator
647  
      crend() const noexcept
648  
      { return const_reverse_iterator(begin()); }
649  
#endif
650  
651  
      // [23.2.4.2] capacity
652  
      /**  Returns the number of elements in the %vector.  */
653  
      size_type
654  
      size() const _GLIBCXX_NOEXCEPT
655  
      { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
656  
657  
      /**  Returns the size() of the largest possible %vector.  */
658  
      size_type
659  
      max_size() const _GLIBCXX_NOEXCEPT
660  
      { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
661  
662  
#if __cplusplus >= 201103L
663  
      /**
664  
       *  @brief  Resizes the %vector to the specified number of elements.
665  
       *  @param  __new_size  Number of elements the %vector should contain.
666  
       *
667  
       *  This function will %resize the %vector to the specified
668  
       *  number of elements.  If the number is smaller than the
669  
       *  %vector's current size the %vector is truncated, otherwise
670  
       *  default constructed elements are appended.
671  
       */
672  
      void
673  
      resize(size_type __new_size)
674  
      {
675  
	if (__new_size > size())
676  
	  _M_default_append(__new_size - size());
677  
	else if (__new_size < size())
678  
	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
679  
      }
680  
681  
      /**
682  
       *  @brief  Resizes the %vector to the specified number of elements.
683  
       *  @param  __new_size  Number of elements the %vector should contain.
684  
       *  @param  __x  Data with which new elements should be populated.
685  
       *
686  
       *  This function will %resize the %vector to the specified
687  
       *  number of elements.  If the number is smaller than the
688  
       *  %vector's current size the %vector is truncated, otherwise
689  
       *  the %vector is extended and new elements are populated with
690  
       *  given data.
691  
       */
692  
      void
693  
      resize(size_type __new_size, const value_type& __x)
694  
      {
695  
	if (__new_size > size())
696  
	  insert(end(), __new_size - size(), __x);
697  
	else if (__new_size < size())
698  
	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
699  
      }
700  
#else
701  
      /**
702  
       *  @brief  Resizes the %vector to the specified number of elements.
703  
       *  @param  __new_size  Number of elements the %vector should contain.
704  
       *  @param  __x  Data with which new elements should be populated.
705  
       *
706  
       *  This function will %resize the %vector to the specified
707  
       *  number of elements.  If the number is smaller than the
708  
       *  %vector's current size the %vector is truncated, otherwise
709  
       *  the %vector is extended and new elements are populated with
710  
       *  given data.
711  
       */
712  
      void
713  
      resize(size_type __new_size, value_type __x = value_type())
714  
      {
715  
	if (__new_size > size())
716  
	  insert(end(), __new_size - size(), __x);
717  
	else if (__new_size < size())
718  
	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
719  
      }
720  
#endif
721  
722  
#if __cplusplus >= 201103L
723  
      /**  A non-binding request to reduce capacity() to size().  */
724  
      void
725  
      shrink_to_fit()
726  
      { _M_shrink_to_fit(); }
727  
#endif
728  
729  
      /**
730  
       *  Returns the total number of elements that the %vector can
731  
       *  hold before needing to allocate more memory.
732  
       */
733  
      size_type
734  
      capacity() const _GLIBCXX_NOEXCEPT
735  
      { return size_type(this->_M_impl._M_end_of_storage
736  
			 - this->_M_impl._M_start); }
737  
738  
      /**
739  
       *  Returns true if the %vector is empty.  (Thus begin() would
740  
       *  equal end().)
741  
       */
742  
      bool
743  
      empty() const _GLIBCXX_NOEXCEPT
744  
      { return begin() == end(); }
745  
746  
      /**
747  
       *  @brief  Attempt to preallocate enough memory for specified number of
748  
       *          elements.
749  
       *  @param  __n  Number of elements required.
750  
       *  @throw  std::length_error  If @a n exceeds @c max_size().
751  
       *
752  
       *  This function attempts to reserve enough memory for the
753  
       *  %vector to hold the specified number of elements.  If the
754  
       *  number requested is more than max_size(), length_error is
755  
       *  thrown.
756  
       *
757  
       *  The advantage of this function is that if optimal code is a
758  
       *  necessity and the user can determine the number of elements
759  
       *  that will be required, the user can reserve the memory in
760  
       *  %advance, and thus prevent a possible reallocation of memory
761  
       *  and copying of %vector data.
762  
       */
763  
      void
764  
      reserve(size_type __n);
765  
766  
      // element access
767  
      /**
768  
       *  @brief  Subscript access to the data contained in the %vector.
769  
       *  @param __n The index of the element for which data should be
770  
       *  accessed.
771  
       *  @return  Read/write reference to data.
772  
       *
773  
       *  This operator allows for easy, array-style, data access.
774  
       *  Note that data access with this operator is unchecked and
775  
       *  out_of_range lookups are not defined. (For checked lookups
776  
       *  see at().)
777  
       */
778  
      reference
779  
      operator[](size_type __n) _GLIBCXX_NOEXCEPT
780  
      { return *(this->_M_impl._M_start + __n); }
781  
782  
      /**
783  
       *  @brief  Subscript access to the data contained in the %vector.
784  
       *  @param __n The index of the element for which data should be
785  
       *  accessed.
786  
       *  @return  Read-only (constant) reference to data.
787  
       *
788  
       *  This operator allows for easy, array-style, data access.
789  
       *  Note that data access with this operator is unchecked and
790  
       *  out_of_range lookups are not defined. (For checked lookups
791  
       *  see at().)
792  
       */
793  
      const_reference
794  
      operator[](size_type __n) const _GLIBCXX_NOEXCEPT
795  
      { return *(this->_M_impl._M_start + __n); }
796  
797  
    protected:
798  
      /// Safety check used only from at().
799  
      void
800  
      _M_range_check(size_type __n) const
801  
      {
802  
	if (__n >= this->size())
803  
	  __throw_out_of_range_fmt(__N("vector::_M_range_check: __n "
804  
				       "(which is %zu) >= this->size() "
805  
				       "(which is %zu)"),
806  
				   __n, this->size());
807  
      }
808  
809  
    public:
810  
      /**
811  
       *  @brief  Provides access to the data contained in the %vector.
812  
       *  @param __n The index of the element for which data should be
813  
       *  accessed.
814  
       *  @return  Read/write reference to data.
815  
       *  @throw  std::out_of_range  If @a __n is an invalid index.
816  
       *
817  
       *  This function provides for safer data access.  The parameter
818  
       *  is first checked that it is in the range of the vector.  The
819  
       *  function throws out_of_range if the check fails.
820  
       */
821  
      reference
822  
      at(size_type __n)
823  
      {
824  
	_M_range_check(__n);
825  
	return (*this)[__n]; 
826  
      }
827  
828  
      /**
829  
       *  @brief  Provides access to the data contained in the %vector.
830  
       *  @param __n The index of the element for which data should be
831  
       *  accessed.
832  
       *  @return  Read-only (constant) reference to data.
833  
       *  @throw  std::out_of_range  If @a __n is an invalid index.
834  
       *
835  
       *  This function provides for safer data access.  The parameter
836  
       *  is first checked that it is in the range of the vector.  The
837  
       *  function throws out_of_range if the check fails.
838  
       */
839  
      const_reference
840  
      at(size_type __n) const
841  
      {
842  
	_M_range_check(__n);
843  
	return (*this)[__n];
844  
      }
845  
846  
      /**
847  
       *  Returns a read/write reference to the data at the first
848  
       *  element of the %vector.
849  
       */
850  
      reference
851  
      front() _GLIBCXX_NOEXCEPT
852  
      { return *begin(); }
853  
854  
      /**
855  
       *  Returns a read-only (constant) reference to the data at the first
856  
       *  element of the %vector.
857  
       */
858  
      const_reference
859  
      front() const _GLIBCXX_NOEXCEPT
860  
      { return *begin(); }
861  
862  
      /**
863  
       *  Returns a read/write reference to the data at the last
864  
       *  element of the %vector.
865  
       */
866  
      reference
867  
      back() _GLIBCXX_NOEXCEPT
868  
      { return *(end() - 1); }
869  
      
870  
      /**
871  
       *  Returns a read-only (constant) reference to the data at the
872  
       *  last element of the %vector.
873  
       */
874  
      const_reference
875  
      back() const _GLIBCXX_NOEXCEPT
876  
      { return *(end() - 1); }
877  
878  
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
879  
      // DR 464. Suggestion for new member functions in standard containers.
880  
      // data access
881  
      /**
882  
       *   Returns a pointer such that [data(), data() + size()) is a valid
883  
       *   range.  For a non-empty %vector, data() == &front().
884  
       */
885  
#if __cplusplus >= 201103L
886  
      _Tp*
887  
#else
888  
      pointer
889  
#endif
890  
      data() _GLIBCXX_NOEXCEPT
891  
      { return _M_data_ptr(this->_M_impl._M_start); }
892  
893  
#if __cplusplus >= 201103L
894  
      const _Tp*
895  
#else
896  
      const_pointer
897  
#endif
898  
      data() const _GLIBCXX_NOEXCEPT
899  
      { return _M_data_ptr(this->_M_impl._M_start); }
900  
901  
      // [23.2.4.3] modifiers
902  
      /**
903  
       *  @brief  Add data to the end of the %vector.
904  
       *  @param  __x  Data to be added.
905  
       *
906  
       *  This is a typical stack operation.  The function creates an
907  
       *  element at the end of the %vector and assigns the given data
908  
       *  to it.  Due to the nature of a %vector this operation can be
909  
       *  done in constant time if the %vector has preallocated space
910  
       *  available.
911  
       */
912  
      void
913  
      push_back(const value_type& __x)
914  
      {
915  
	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
916  
	  {
917  
	    _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
918  
	                             __x);
919  
	    ++this->_M_impl._M_finish;
920  
	  }
921  
	else
922  
#if __cplusplus >= 201103L
923  
	  _M_emplace_back_aux(__x);
924  
#else
925  
	  _M_insert_aux(end(), __x);
926  
#endif
927  
      }
928  
929  
#if __cplusplus >= 201103L
930  
      void
931  
      push_back(value_type&& __x)
932  
      { emplace_back(std::move(__x)); }
933  
934  
      template<typename... _Args>
935  
        void
936  
        emplace_back(_Args&&... __args);
937  
#endif
938  
939  
      /**
940  
       *  @brief  Removes last element.
941  
       *
942  
       *  This is a typical stack operation. It shrinks the %vector by one.
943  
       *
944  
       *  Note that no data is returned, and if the last element's
945  
       *  data is needed, it should be retrieved before pop_back() is
946  
       *  called.
947  
       */
948  
      void
949  
      pop_back() _GLIBCXX_NOEXCEPT
950  
      {
951  
	--this->_M_impl._M_finish;
952  
	_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
953  
      }
954  
955  
#if __cplusplus >= 201103L
956  
      /**
957  
       *  @brief  Inserts an object in %vector before specified iterator.
958  
       *  @param  __position  A const_iterator into the %vector.
959  
       *  @param  __args  Arguments.
960  
       *  @return  An iterator that points to the inserted data.
961  
       *
962  
       *  This function will insert an object of type T constructed
963  
       *  with T(std::forward<Args>(args)...) before the specified location.
964  
       *  Note that this kind of operation could be expensive for a %vector
965  
       *  and if it is frequently used the user should consider using
966  
       *  std::list.
967  
       */
968  
      template<typename... _Args>
969  
        iterator
970  
        emplace(const_iterator __position, _Args&&... __args);
971  
972  
      /**
973  
       *  @brief  Inserts given value into %vector before specified iterator.
974  
       *  @param  __position  A const_iterator into the %vector.
975  
       *  @param  __x  Data to be inserted.
976  
       *  @return  An iterator that points to the inserted data.
977  
       *
978  
       *  This function will insert a copy of the given value before
979  
       *  the specified location.  Note that this kind of operation
980  
       *  could be expensive for a %vector and if it is frequently
981  
       *  used the user should consider using std::list.
982  
       */
983  
      iterator
984  
      insert(const_iterator __position, const value_type& __x);
985  
#else
986  
      /**
987  
       *  @brief  Inserts given value into %vector before specified iterator.
988  
       *  @param  __position  An iterator into the %vector.
989  
       *  @param  __x  Data to be inserted.
990  
       *  @return  An iterator that points to the inserted data.
991  
       *
992  
       *  This function will insert a copy of the given value before
993  
       *  the specified location.  Note that this kind of operation
994  
       *  could be expensive for a %vector and if it is frequently
995  
       *  used the user should consider using std::list.
996  
       */
997  
      iterator
998  
      insert(iterator __position, const value_type& __x);
999  
#endif
1000  
1001  
#if __cplusplus >= 201103L
1002  
      /**
1003  
       *  @brief  Inserts given rvalue into %vector before specified iterator.
1004  
       *  @param  __position  A const_iterator into the %vector.
1005  
       *  @param  __x  Data to be inserted.
1006  
       *  @return  An iterator that points to the inserted data.
1007  
       *
1008  
       *  This function will insert a copy of the given rvalue before
1009  
       *  the specified location.  Note that this kind of operation
1010  
       *  could be expensive for a %vector and if it is frequently
1011  
       *  used the user should consider using std::list.
1012  
       */
1013  
      iterator
1014  
      insert(const_iterator __position, value_type&& __x)
1015  
      { return emplace(__position, std::move(__x)); }
1016  
1017  
      /**
1018  
       *  @brief  Inserts an initializer_list into the %vector.
1019  
       *  @param  __position  An iterator into the %vector.
1020  
       *  @param  __l  An initializer_list.
1021  
       *
1022  
       *  This function will insert copies of the data in the 
1023  
       *  initializer_list @a l into the %vector before the location
1024  
       *  specified by @a position.
1025  
       *
1026  
       *  Note that this kind of operation could be expensive for a
1027  
       *  %vector and if it is frequently used the user should
1028  
       *  consider using std::list.
1029  
       */
1030  
      iterator
1031  
      insert(const_iterator __position, initializer_list<value_type> __l)
1032  
      { return this->insert(__position, __l.begin(), __l.end()); }
1033  
#endif
1034  
1035  
#if __cplusplus >= 201103L
1036  
      /**
1037  
       *  @brief  Inserts a number of copies of given data into the %vector.
1038  
       *  @param  __position  A const_iterator into the %vector.
1039  
       *  @param  __n  Number of elements to be inserted.
1040  
       *  @param  __x  Data to be inserted.
1041  
       *  @return  An iterator that points to the inserted data.
1042  
       *
1043  
       *  This function will insert a specified number of copies of
1044  
       *  the given data before the location specified by @a position.
1045  
       *
1046  
       *  Note that this kind of operation could be expensive for a
1047  
       *  %vector and if it is frequently used the user should
1048  
       *  consider using std::list.
1049  
       */
1050  
      iterator
1051  
      insert(const_iterator __position, size_type __n, const value_type& __x)
1052  
      {
1053  
	difference_type __offset = __position - cbegin();
1054  
	_M_fill_insert(begin() + __offset, __n, __x);
1055  
	return begin() + __offset;
1056  
      }
1057  
#else
1058  
      /**
1059  
       *  @brief  Inserts a number of copies of given data into the %vector.
1060  
       *  @param  __position  An iterator into the %vector.
1061  
       *  @param  __n  Number of elements to be inserted.
1062  
       *  @param  __x  Data to be inserted.
1063  
       *
1064  
       *  This function will insert a specified number of copies of
1065  
       *  the given data before the location specified by @a position.
1066  
       *
1067  
       *  Note that this kind of operation could be expensive for a
1068  
       *  %vector and if it is frequently used the user should
1069  
       *  consider using std::list.
1070  
       */
1071  
      void
1072  
      insert(iterator __position, size_type __n, const value_type& __x)
1073  
      { _M_fill_insert(__position, __n, __x); }
1074  
#endif
1075  
1076  
#if __cplusplus >= 201103L
1077  
      /**
1078  
       *  @brief  Inserts a range into the %vector.
1079  
       *  @param  __position  A const_iterator into the %vector.
1080  
       *  @param  __first  An input iterator.
1081  
       *  @param  __last   An input iterator.
1082  
       *  @return  An iterator that points to the inserted data.
1083  
       *
1084  
       *  This function will insert copies of the data in the range
1085  
       *  [__first,__last) into the %vector before the location specified
1086  
       *  by @a pos.
1087  
       *
1088  
       *  Note that this kind of operation could be expensive for a
1089  
       *  %vector and if it is frequently used the user should
1090  
       *  consider using std::list.
1091  
       */
1092  
      template<typename _InputIterator,
1093  
	       typename = std::_RequireInputIter<_InputIterator>>
1094  
        iterator
1095  
        insert(const_iterator __position, _InputIterator __first,
1096  
	       _InputIterator __last)
1097  
        {
1098  
	  difference_type __offset = __position - cbegin();
1099  
	  _M_insert_dispatch(begin() + __offset,
1100  
			     __first, __last, __false_type());
1101  
	  return begin() + __offset;
1102  
	}
1103  
#else
1104  
      /**
1105  
       *  @brief  Inserts a range into the %vector.
1106  
       *  @param  __position  An iterator into the %vector.
1107  
       *  @param  __first  An input iterator.
1108  
       *  @param  __last   An input iterator.
1109  
       *
1110  
       *  This function will insert copies of the data in the range
1111  
       *  [__first,__last) into the %vector before the location specified
1112  
       *  by @a pos.
1113  
       *
1114  
       *  Note that this kind of operation could be expensive for a
1115  
       *  %vector and if it is frequently used the user should
1116  
       *  consider using std::list.
1117  
       */
1118  
      template<typename _InputIterator>
1119  
        void
1120  
        insert(iterator __position, _InputIterator __first,
1121  
	       _InputIterator __last)
1122  
        {
1123  
	  // Check whether it's an integral type.  If so, it's not an iterator.
1124  
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1125  
	  _M_insert_dispatch(__position, __first, __last, _Integral());
1126  
	}
1127  
#endif
1128  
1129  
      /**
1130  
       *  @brief  Remove element at given position.
1131  
       *  @param  __position  Iterator pointing to element to be erased.
1132  
       *  @return  An iterator pointing to the next element (or end()).
1133  
       *
1134  
       *  This function will erase the element at the given position and thus
1135  
       *  shorten the %vector by one.
1136  
       *
1137  
       *  Note This operation could be expensive and if it is
1138  
       *  frequently used the user should consider using std::list.
1139  
       *  The user is also cautioned that this function only erases
1140  
       *  the element, and that if the element is itself a pointer,
1141  
       *  the pointed-to memory is not touched in any way.  Managing
1142  
       *  the pointer is the user's responsibility.
1143  
       */
1144  
      iterator
1145  
#if __cplusplus >= 201103L
1146  
      erase(const_iterator __position)
1147  
      { return _M_erase(begin() + (__position - cbegin())); }
1148  
#else
1149  
      erase(iterator __position)
1150  
      { return _M_erase(__position); }
1151  
#endif
1152  
1153  
      /**
1154  
       *  @brief  Remove a range of elements.
1155  
       *  @param  __first  Iterator pointing to the first element to be erased.
1156  
       *  @param  __last  Iterator pointing to one past the last element to be
1157  
       *                  erased.
1158  
       *  @return  An iterator pointing to the element pointed to by @a __last
1159  
       *           prior to erasing (or end()).
1160  
       *
1161  
       *  This function will erase the elements in the range
1162  
       *  [__first,__last) and shorten the %vector accordingly.
1163  
       *
1164  
       *  Note This operation could be expensive and if it is
1165  
       *  frequently used the user should consider using std::list.
1166  
       *  The user is also cautioned that this function only erases
1167  
       *  the elements, and that if the elements themselves are
1168  
       *  pointers, the pointed-to memory is not touched in any way.
1169  
       *  Managing the pointer is the user's responsibility.
1170  
       */
1171  
      iterator
1172  
#if __cplusplus >= 201103L
1173  
      erase(const_iterator __first, const_iterator __last)
1174  
      {
1175  
	const auto __beg = begin();
1176  
	const auto __cbeg = cbegin();
1177  
	return _M_erase(__beg + (__first - __cbeg), __beg + (__last - __cbeg));
1178  
      }
1179  
#else
1180  
      erase(iterator __first, iterator __last)
1181  
      { return _M_erase(__first, __last); }
1182  
#endif
1183  
1184  
      /**
1185  
       *  @brief  Swaps data with another %vector.
1186  
       *  @param  __x  A %vector of the same element and allocator types.
1187  
       *
1188  
       *  This exchanges the elements between two vectors in constant time.
1189  
       *  (Three pointers, so it should be quite fast.)
1190  
       *  Note that the global std::swap() function is specialized such that
1191  
       *  std::swap(v1,v2) will feed to this function.
1192  
       */
1193  
      void
1194  
      swap(vector& __x)
1195  
#if __cplusplus >= 201103L
1196  
      noexcept(_Alloc_traits::_S_nothrow_swap())
1197  
#endif
1198  
      {
1199  
	this->_M_impl._M_swap_data(__x._M_impl);
1200  
	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1201  
	                          __x._M_get_Tp_allocator());
1202  
      }
1203  
1204  
      /**
1205  
       *  Erases all the elements.  Note that this function only erases the
1206  
       *  elements, and that if the elements themselves are pointers, the
1207  
       *  pointed-to memory is not touched in any way.  Managing the pointer is
1208  
       *  the user's responsibility.
1209  
       */
1210  
      void
1211  
      clear() _GLIBCXX_NOEXCEPT
1212  
      { _M_erase_at_end(this->_M_impl._M_start); }
1213  
1214  
    protected:
1215  
      /**
1216  
       *  Memory expansion handler.  Uses the member allocation function to
1217  
       *  obtain @a n bytes of memory, and then copies [first,last) into it.
1218  
       */
1219  
      template<typename _ForwardIterator>
1220  
        pointer
1221  
        _M_allocate_and_copy(size_type __n,
1222  
			     _ForwardIterator __first, _ForwardIterator __last)
1223  
        {
1224  
	  pointer __result = this->_M_allocate(__n);
1225  
	  __try
1226  
	    {
1227  
	      std::__uninitialized_copy_a(__first, __last, __result,
1228  
					  _M_get_Tp_allocator());
1229  
	      return __result;
1230  
	    }
1231  
	  __catch(...)
1232  
	    {
1233  
	      _M_deallocate(__result, __n);
1234  
	      __throw_exception_again;
1235  
	    }
1236  
	}
1237  
1238  
1239  
      // Internal constructor functions follow.
1240  
1241  
      // Called by the range constructor to implement [23.1.1]/9
1242  
1243  
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1244  
      // 438. Ambiguity in the "do the right thing" clause
1245  
      template<typename _Integer>
1246  
        void
1247  
        _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1248  
        {
1249  
	  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1250  
	  this->_M_impl._M_end_of_storage =
1251  
	    this->_M_impl._M_start + static_cast<size_type>(__n);
1252  
	  _M_fill_initialize(static_cast<size_type>(__n), __value);
1253  
	}
1254  
1255  
      // Called by the range constructor to implement [23.1.1]/9
1256  
      template<typename _InputIterator>
1257  
        void
1258  
        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1259  
			       __false_type)
1260  
        {
1261  
	  typedef typename std::iterator_traits<_InputIterator>::
1262  
	    iterator_category _IterCategory;
1263  
	  _M_range_initialize(__first, __last, _IterCategory());
1264  
	}
1265  
1266  
      // Called by the second initialize_dispatch above
1267  
      template<typename _InputIterator>
1268  
        void
1269  
        _M_range_initialize(_InputIterator __first,
1270  
			    _InputIterator __last, std::input_iterator_tag)
1271  
        {
1272  
	  for (; __first != __last; ++__first)
1273  
#if __cplusplus >= 201103L
1274  
	    emplace_back(*__first);
1275  
#else
1276  
	    push_back(*__first);
1277  
#endif
1278  
	}
1279  
1280  
      // Called by the second initialize_dispatch above
1281  
      template<typename _ForwardIterator>
1282  
        void
1283  
        _M_range_initialize(_ForwardIterator __first,
1284  
			    _ForwardIterator __last, std::forward_iterator_tag)
1285  
        {
1286  
	  const size_type __n = std::distance(__first, __last);
1287  
	  this->_M_impl._M_start = this->_M_allocate(__n);
1288  
	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1289  
	  this->_M_impl._M_finish =
1290  
	    std::__uninitialized_copy_a(__first, __last,
1291  
					this->_M_impl._M_start,
1292  
					_M_get_Tp_allocator());
1293  
	}
1294  
1295  
      // Called by the first initialize_dispatch above and by the
1296  
      // vector(n,value,a) constructor.
1297  
      void
1298  
      _M_fill_initialize(size_type __n, const value_type& __value)
1299  
      {
1300  
	this->_M_impl._M_finish =
1301  
	  std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1302  
					_M_get_Tp_allocator());
1303  
      }
1304  
1305  
#if __cplusplus >= 201103L
1306  
      // Called by the vector(n) constructor.
1307  
      void
1308  
      _M_default_initialize(size_type __n)
1309  
      {
1310  
	this->_M_impl._M_finish =
1311  
	  std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1312  
					   _M_get_Tp_allocator());
1313  
      }
1314  
#endif
1315  
1316  
      // Internal assign functions follow.  The *_aux functions do the actual
1317  
      // assignment work for the range versions.
1318  
1319  
      // Called by the range assign to implement [23.1.1]/9
1320  
1321  
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1322  
      // 438. Ambiguity in the "do the right thing" clause
1323  
      template<typename _Integer>
1324  
        void
1325  
        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1326  
        { _M_fill_assign(__n, __val); }
1327  
1328  
      // Called by the range assign to implement [23.1.1]/9
1329  
      template<typename _InputIterator>
1330  
        void
1331  
        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1332  
			   __false_type)
1333  
        {
1334  
	  typedef typename std::iterator_traits<_InputIterator>::
1335  
	    iterator_category _IterCategory;
1336  
	  _M_assign_aux(__first, __last, _IterCategory());
1337  
	}
1338  
1339  
      // Called by the second assign_dispatch above
1340  
      template<typename _InputIterator>
1341  
        void
1342  
        _M_assign_aux(_InputIterator __first, _InputIterator __last,
1343  
		      std::input_iterator_tag);
1344  
1345  
      // Called by the second assign_dispatch above
1346  
      template<typename _ForwardIterator>
1347  
        void
1348  
        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1349  
		      std::forward_iterator_tag);
1350  
1351  
      // Called by assign(n,t), and the range assign when it turns out
1352  
      // to be the same thing.
1353  
      void
1354  
      _M_fill_assign(size_type __n, const value_type& __val);
1355  
1356  
1357  
      // Internal insert functions follow.
1358  
1359  
      // Called by the range insert to implement [23.1.1]/9
1360  
1361  
      // _GLIBCXX_RESOLVE_LIB_DEFECTS
1362  
      // 438. Ambiguity in the "do the right thing" clause
1363  
      template<typename _Integer>
1364  
        void
1365  
        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1366  
			   __true_type)
1367  
        { _M_fill_insert(__pos, __n, __val); }
1368  
1369  
      // Called by the range insert to implement [23.1.1]/9
1370  
      template<typename _InputIterator>
1371  
        void
1372  
        _M_insert_dispatch(iterator __pos, _InputIterator __first,
1373  
			   _InputIterator __last, __false_type)
1374  
        {
1375  
	  typedef typename std::iterator_traits<_InputIterator>::
1376  
	    iterator_category _IterCategory;
1377  
	  _M_range_insert(__pos, __first, __last, _IterCategory());
1378  
	}
1379  
1380  
      // Called by the second insert_dispatch above
1381  
      template<typename _InputIterator>
1382  
        void
1383  
        _M_range_insert(iterator __pos, _InputIterator __first,
1384  
			_InputIterator __last, std::input_iterator_tag);
1385  
1386  
      // Called by the second insert_dispatch above
1387  
      template<typename _ForwardIterator>
1388  
        void
1389  
        _M_range_insert(iterator __pos, _ForwardIterator __first,
1390  
			_ForwardIterator __last, std::forward_iterator_tag);
1391  
1392  
      // Called by insert(p,n,x), and the range insert when it turns out to be
1393  
      // the same thing.
1394  
      void
1395  
      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1396  
1397  
#if __cplusplus >= 201103L
1398  
      // Called by resize(n).
1399  
      void
1400  
      _M_default_append(size_type __n);
1401  
1402  
      bool
1403  
      _M_shrink_to_fit();
1404  
#endif
1405  
1406  
      // Called by insert(p,x)
1407  
#if __cplusplus < 201103L
1408  
      void
1409  
      _M_insert_aux(iterator __position, const value_type& __x);
1410  
#else
1411  
      template<typename... _Args>
1412  
        void
1413  
        _M_insert_aux(iterator __position, _Args&&... __args);
1414  
1415  
      template<typename... _Args>
1416  
        void
1417  
        _M_emplace_back_aux(_Args&&... __args);
1418  
#endif
1419  
1420  
      // Called by the latter.
1421  
      size_type
1422  
      _M_check_len(size_type __n, const char* __s) const
1423  
      {
1424  
	if (max_size() - size() < __n)
1425  
	  __throw_length_error(__N(__s));
1426  
1427  
	const size_type __len = size() + std::max(size(), __n);
1428  
	return (__len < size() || __len > max_size()) ? max_size() : __len;
1429  
      }
1430  
1431  
      // Internal erase functions follow.
1432  
1433  
      // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1434  
      // _M_assign_aux.
1435  
      void
1436  
      _M_erase_at_end(pointer __pos) _GLIBCXX_NOEXCEPT
1437  
      {
1438  
	std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1439  
	this->_M_impl._M_finish = __pos;
1440  
      }
1441  
1442  
      iterator
1443  
      _M_erase(iterator __position);
1444  
1445  
      iterator
1446  
      _M_erase(iterator __first, iterator __last);
1447  
1448  
#if __cplusplus >= 201103L
1449  
    private:
1450  
      // Constant-time move assignment when source object's memory can be
1451  
      // moved, either because the source's allocator will move too
1452  
      // or because the allocators are equal.
1453  
      void
1454  
      _M_move_assign(vector&& __x, std::true_type) noexcept
1455  
      {
1456  
	vector __tmp(get_allocator());
1457  
	this->_M_impl._M_swap_data(__tmp._M_impl);
1458  
	this->_M_impl._M_swap_data(__x._M_impl);
1459  
	std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
1460  
      }
1461  
1462  
      // Do move assignment when it might not be possible to move source
1463  
      // object's memory, resulting in a linear-time operation.
1464  
      void
1465  
      _M_move_assign(vector&& __x, std::false_type)
1466  
      {
1467  
	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1468  
	  _M_move_assign(std::move(__x), std::true_type());
1469  
	else
1470  
	  {
1471  
	    // The rvalue's allocator cannot be moved and is not equal,
1472  
	    // so we need to individually move each element.
1473  
	    this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
1474  
			 std::__make_move_if_noexcept_iterator(__x.end()));
1475  
	    __x.clear();
1476  
	  }
1477  
      }
1478  
#endif
1479  
1480  
#if __cplusplus >= 201103L
1481  
      template<typename _Up>
1482  
	_Up*
1483  
	_M_data_ptr(_Up* __ptr) const
1484  
	{ return __ptr; }
1485  
1486  
      template<typename _Ptr>
1487  
	typename std::pointer_traits<_Ptr>::element_type*
1488  
	_M_data_ptr(_Ptr __ptr) const
1489  
	{ return empty() ? nullptr : std::__addressof(*__ptr); }
1490  
#else
1491  
      template<typename _Ptr>
1492  
	_Ptr
1493  
	_M_data_ptr(_Ptr __ptr) const
1494  
	{ return __ptr; }
1495  
#endif
1496  
    };
1497  
1498  
1499  
  /**
1500  
   *  @brief  Vector equality comparison.
1501  
   *  @param  __x  A %vector.
1502  
   *  @param  __y  A %vector of the same type as @a __x.
1503  
   *  @return  True iff the size and elements of the vectors are equal.
1504  
   *
1505  
   *  This is an equivalence relation.  It is linear in the size of the
1506  
   *  vectors.  Vectors are considered equivalent if their sizes are equal,
1507  
   *  and if corresponding elements compare equal.
1508  
  */
1509  
  template<typename _Tp, typename _Alloc>
1510  
    inline bool
1511  
    operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1512  
    { return (__x.size() == __y.size()
1513  
	      && std::equal(__x.begin(), __x.end(), __y.begin())); }
1514  
1515  
  /**
1516  
   *  @brief  Vector ordering relation.
1517  
   *  @param  __x  A %vector.
1518  
   *  @param  __y  A %vector of the same type as @a __x.
1519  
   *  @return  True iff @a __x is lexicographically less than @a __y.
1520  
   *
1521  
   *  This is a total ordering relation.  It is linear in the size of the
1522  
   *  vectors.  The elements must be comparable with @c <.
1523  
   *
1524  
   *  See std::lexicographical_compare() for how the determination is made.
1525  
  */
1526  
  template<typename _Tp, typename _Alloc>
1527  
    inline bool
1528  
    operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1529  
    { return std::lexicographical_compare(__x.begin(), __x.end(),
1530  
					  __y.begin(), __y.end()); }
1531  
1532  
  /// Based on operator==
1533  
  template<typename _Tp, typename _Alloc>
1534  
    inline bool
1535  
    operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1536  
    { return !(__x == __y); }
1537  
1538  
  /// Based on operator<
1539  
  template<typename _Tp, typename _Alloc>
1540  
    inline bool
1541  
    operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1542  
    { return __y < __x; }
1543  
1544  
  /// Based on operator<
1545  
  template<typename _Tp, typename _Alloc>
1546  
    inline bool
1547  
    operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1548  
    { return !(__y < __x); }
1549  
1550  
  /// Based on operator<
1551  
  template<typename _Tp, typename _Alloc>
1552  
    inline bool
1553  
    operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1554  
    { return !(__x < __y); }
1555  
1556  
  /// See std::vector::swap().
1557  
  template<typename _Tp, typename _Alloc>
1558  
    inline void
1559  
    swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1560  
    { __x.swap(__y); }
1561  
1562  
_GLIBCXX_END_NAMESPACE_CONTAINER
1563  
} // namespace std
1564  
1565  
#endif /* _STL_VECTOR_H */
1566  

Copyright (c) 2006-2012 Rogue Wave Software, Inc. All Rights Reserved.
Patents pending.