/storage/packages/gcc/5.3.0/include/c++/5.3.0/bits/unordered_map.h

Line% of fetchesSource
1  
// unordered_map implementation -*- C++ -*-
2  
3  
// Copyright (C) 2010-2015 Free Software Foundation, Inc.
4  
//
5  
// This file is part of the GNU ISO C++ Library.  This library is free
6  
// software; you can redistribute it and/or modify it under the
7  
// terms of the GNU General Public License as published by the
8  
// Free Software Foundation; either version 3, or (at your option)
9  
// any later version.
10  
11  
// This library is distributed in the hope that it will be useful,
12  
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13  
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  
// GNU General Public License for more details.
15  
16  
// Under Section 7 of GPL version 3, you are granted additional
17  
// permissions described in the GCC Runtime Library Exception, version
18  
// 3.1, as published by the Free Software Foundation.
19  
20  
// You should have received a copy of the GNU General Public License and
21  
// a copy of the GCC Runtime Library Exception along with this program;
22  
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23  
// <http://www.gnu.org/licenses/>.
24  
25  
/** @file bits/unordered_map.h
26  
 *  This is an internal header file, included by other library headers.
27  
 *  Do not attempt to use it directly. @headername{unordered_map}
28  
 */
29  
30  
#ifndef _UNORDERED_MAP_H
31  
#define _UNORDERED_MAP_H
32  
33  
namespace std _GLIBCXX_VISIBILITY(default)
34  
{
35  
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
36  
37  
  /// Base types for unordered_map.
38  
  template<bool _Cache>
39  
    using __umap_traits = __detail::_Hashtable_traits<_Cache, false, true>;
40  
41  
  template<typename _Key,
42  
	   typename _Tp,
43  
	   typename _Hash = hash<_Key>,
44  
	   typename _Pred = std::equal_to<_Key>,
45  
	   typename _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
46  
	   typename _Tr = __umap_traits<__cache_default<_Key, _Hash>::value>>
47  
    using __umap_hashtable = _Hashtable<_Key, std::pair<const _Key, _Tp>,
48  
                                        _Alloc, __detail::_Select1st,
49  
				        _Pred, _Hash,
50  
				        __detail::_Mod_range_hashing,
51  
				        __detail::_Default_ranged_hash,
52  
				        __detail::_Prime_rehash_policy, _Tr>;
53  
54  
  /// Base types for unordered_multimap.
55  
  template<bool _Cache>
56  
    using __ummap_traits = __detail::_Hashtable_traits<_Cache, false, false>;
57  
58  
  template<typename _Key,
59  
	   typename _Tp,
60  
	   typename _Hash = hash<_Key>,
61  
	   typename _Pred = std::equal_to<_Key>,
62  
	   typename _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
63  
	   typename _Tr = __ummap_traits<__cache_default<_Key, _Hash>::value>>
64  
    using __ummap_hashtable = _Hashtable<_Key, std::pair<const _Key, _Tp>,
65  
					 _Alloc, __detail::_Select1st,
66  
					 _Pred, _Hash,
67  
					 __detail::_Mod_range_hashing,
68  
					 __detail::_Default_ranged_hash,
69  
					 __detail::_Prime_rehash_policy, _Tr>;
70  
71  
  /**
72  
   *  @brief A standard container composed of unique keys (containing
73  
   *  at most one of each key value) that associates values of another type
74  
   *  with the keys.
75  
   *
76  
   *  @ingroup unordered_associative_containers
77  
   *
78  
   *  @tparam  _Key    Type of key objects.
79  
   *  @tparam  _Tp     Type of mapped objects.
80  
   *  @tparam  _Hash   Hashing function object type, defaults to hash<_Value>.
81  
   *  @tparam  _Pred   Predicate function object type, defaults
82  
   *                   to equal_to<_Value>.
83  
   *  @tparam  _Alloc  Allocator type, defaults to 
84  
   *                   std::allocator<std::pair<const _Key, _Tp>>.
85  
   *
86  
   *  Meets the requirements of a <a href="tables.html#65">container</a>, and
87  
   *  <a href="tables.html#xx">unordered associative container</a>
88  
   *
89  
   * The resulting value type of the container is std::pair<const _Key, _Tp>.
90  
   *
91  
   *  Base is _Hashtable, dispatched at compile time via template
92  
   *  alias __umap_hashtable.
93  
   */
94  
  template<class _Key, class _Tp,
95  
	   class _Hash = hash<_Key>,
96  
	   class _Pred = std::equal_to<_Key>,
97  
	   class _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
98  
    class unordered_map
99  
    {
100  
      typedef __umap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>  _Hashtable;
101  
      _Hashtable _M_h;
102  
103  
    public:
104  
      // typedefs:
105  
      //@{
106  
      /// Public typedefs.
107  
      typedef typename _Hashtable::key_type	key_type;
108  
      typedef typename _Hashtable::value_type	value_type;
109  
      typedef typename _Hashtable::mapped_type	mapped_type;
110  
      typedef typename _Hashtable::hasher	hasher;
111  
      typedef typename _Hashtable::key_equal	key_equal;
112  
      typedef typename _Hashtable::allocator_type allocator_type;
113  
      //@}
114  
115  
      //@{
116  
      ///  Iterator-related typedefs.
117  
      typedef typename _Hashtable::pointer		pointer;
118  
      typedef typename _Hashtable::const_pointer	const_pointer;
119  
      typedef typename _Hashtable::reference		reference;
120  
      typedef typename _Hashtable::const_reference	const_reference;
121  
      typedef typename _Hashtable::iterator		iterator;
122  
      typedef typename _Hashtable::const_iterator	const_iterator;
123  
      typedef typename _Hashtable::local_iterator	local_iterator;
124  
      typedef typename _Hashtable::const_local_iterator	const_local_iterator;
125  
      typedef typename _Hashtable::size_type		size_type;
126  
      typedef typename _Hashtable::difference_type	difference_type;
127  
      //@}
128  
129  
      //construct/destroy/copy
130  
131  
      /// Default constructor.
132  
      unordered_map() = default;
133  
134  
      /**
135  
       *  @brief  Default constructor creates no elements.
136  
       *  @param __n  Minimal initial number of buckets.
137  
       *  @param __hf  A hash functor.
138  
       *  @param __eql  A key equality functor.
139  
       *  @param __a  An allocator object.
140  
       */
141  
      explicit
142  
      unordered_map(size_type __n,
143  
		    const hasher& __hf = hasher(),
144  
		    const key_equal& __eql = key_equal(),
145  
		    const allocator_type& __a = allocator_type())
146  
      : _M_h(__n, __hf, __eql, __a)
147  
      { }
148  
149  
      /**
150  
       *  @brief  Builds an %unordered_map from a range.
151  
       *  @param  __first  An input iterator.
152  
       *  @param  __last  An input iterator.
153  
       *  @param __n  Minimal initial number of buckets.
154  
       *  @param __hf  A hash functor.
155  
       *  @param __eql  A key equality functor.
156  
       *  @param __a  An allocator object.
157  
       *
158  
       *  Create an %unordered_map consisting of copies of the elements from
159  
       *  [__first,__last).  This is linear in N (where N is
160  
       *  distance(__first,__last)).
161  
       */
162  
      template<typename _InputIterator>
163  
	unordered_map(_InputIterator __first, _InputIterator __last,
164  
		      size_type __n = 0,
165  
		      const hasher& __hf = hasher(),
166  
		      const key_equal& __eql = key_equal(),
167  
		      const allocator_type& __a = allocator_type())
168  
	: _M_h(__first, __last, __n, __hf, __eql, __a)
169  
	{ }
170  
171  
      /// Copy constructor.
172  
      unordered_map(const unordered_map&) = default;
173  
174  
      /// Move constructor.
175  
      unordered_map(unordered_map&&) = default;
176  
177  
      /**
178  
       *  @brief Creates an %unordered_map with no elements.
179  
       *  @param __a An allocator object.
180  
       */
181  
      explicit
182  
      unordered_map(const allocator_type& __a)
183  
	: _M_h(__a)
184  
      { }
185  
186  
      /*
187  
       *  @brief Copy constructor with allocator argument.
188  
       * @param  __uset  Input %unordered_map to copy.
189  
       * @param  __a  An allocator object.
190  
       */
191  
      unordered_map(const unordered_map& __umap,
192  
		    const allocator_type& __a)
193  
      : _M_h(__umap._M_h, __a)
194  
      { }
195  
196  
      /*
197  
       *  @brief  Move constructor with allocator argument.
198  
       *  @param  __uset Input %unordered_map to move.
199  
       *  @param  __a    An allocator object.
200  
       */
201  
      unordered_map(unordered_map&& __umap,
202  
		    const allocator_type& __a)
203  
      : _M_h(std::move(__umap._M_h), __a)
204  
      { }
205  
206  
      /**
207  
       *  @brief  Builds an %unordered_map from an initializer_list.
208  
       *  @param  __l  An initializer_list.
209  
       *  @param __n  Minimal initial number of buckets.
210  
       *  @param __hf  A hash functor.
211  
       *  @param __eql  A key equality functor.
212  
       *  @param  __a  An allocator object.
213  
       *
214  
       *  Create an %unordered_map consisting of copies of the elements in the
215  
       *  list. This is linear in N (where N is @a __l.size()).
216  
       */
217  
      unordered_map(initializer_list<value_type> __l,
218  
		    size_type __n = 0,
219  
		    const hasher& __hf = hasher(),
220  
		    const key_equal& __eql = key_equal(),
221  
		    const allocator_type& __a = allocator_type())
222  
      : _M_h(__l, __n, __hf, __eql, __a)
223  
      { }
224  
225  
      unordered_map(size_type __n, const allocator_type& __a)
226  
      : unordered_map(__n, hasher(), key_equal(), __a)
227  
      { }
228  
229  
      unordered_map(size_type __n, const hasher& __hf,
230  
		    const allocator_type& __a)
231  
      : unordered_map(__n, __hf, key_equal(), __a)
232  
      { }
233  
234  
      template<typename _InputIterator>
235  
	unordered_map(_InputIterator __first, _InputIterator __last,
236  
		      size_type __n,
237  
		      const allocator_type& __a)
238  
	: unordered_map(__first, __last, __n, hasher(), key_equal(), __a)
239  
	{ }
240  
241  
      template<typename _InputIterator>
242  
	unordered_map(_InputIterator __first, _InputIterator __last,
243  
		      size_type __n, const hasher& __hf,
244  
		      const allocator_type& __a)
245  
	  : unordered_map(__first, __last, __n, __hf, key_equal(), __a)
246  
	{ }
247  
248  
      unordered_map(initializer_list<value_type> __l,
249  
		    size_type __n,
250  
		    const allocator_type& __a)
251  
      : unordered_map(__l, __n, hasher(), key_equal(), __a)
252  
      { }
253  
254  
      unordered_map(initializer_list<value_type> __l,
255  
		    size_type __n, const hasher& __hf,
256  
		    const allocator_type& __a)
257  
      : unordered_map(__l, __n, __hf, key_equal(), __a)
258  
      { }
259  
260  
      /// Copy assignment operator.
261  
      unordered_map&
262  
      operator=(const unordered_map&) = default;
263  
264  
      /// Move assignment operator.
265  
      unordered_map&
266  
      operator=(unordered_map&&) = default;
267  
268  
      /**
269  
       *  @brief  %Unordered_map list assignment operator.
270  
       *  @param  __l  An initializer_list.
271  
       *
272  
       *  This function fills an %unordered_map with copies of the elements in
273  
       *  the initializer list @a __l.
274  
       *
275  
       *  Note that the assignment completely changes the %unordered_map and
276  
       *  that the resulting %unordered_map's size is the same as the number
277  
       *  of elements assigned.  Old data may be lost.
278  
       */
279  
      unordered_map&
280  
      operator=(initializer_list<value_type> __l)
281  
      {
282  
	_M_h = __l;
283  
	return *this;
284  
      }
285  
286  
      ///  Returns the allocator object with which the %unordered_map was
287  
      ///  constructed.
288  
      allocator_type
289  
      get_allocator() const noexcept
290  
      { return _M_h.get_allocator(); }
291  
292  
      // size and capacity:
293  
294  
      ///  Returns true if the %unordered_map is empty.
295  
      bool
296  
      empty() const noexcept
297  
      { return _M_h.empty(); }
298  
299  
      ///  Returns the size of the %unordered_map.
300  
      size_type
301  
      size() const noexcept
302  
      { return _M_h.size(); }
303  
304  
      ///  Returns the maximum size of the %unordered_map.
305  
      size_type
306  
      max_size() const noexcept
307  
      { return _M_h.max_size(); }
308  
309  
      // iterators.
310  
311  
      /**
312  
       *  Returns a read/write iterator that points to the first element in the
313  
       *  %unordered_map.
314  
       */
315  
      iterator
316  
      begin() noexcept
317  
      { return _M_h.begin(); }
318  
319  
      //@{
320  
      /**
321  
       *  Returns a read-only (constant) iterator that points to the first
322  
       *  element in the %unordered_map.
323  
       */
324  
      const_iterator
325  
      begin() const noexcept
326  
      { return _M_h.begin(); }
327  
328  
      const_iterator
329  
      cbegin() const noexcept
330  
      { return _M_h.begin(); }
331  
      //@}
332  
333  
      /**
334  
       *  Returns a read/write iterator that points one past the last element in
335  
       *  the %unordered_map.
336  
       */
337  
      iterator
338  
      end() noexcept
339  
      { return _M_h.end(); }
340  
341  
      //@{
342  
      /**
343  
       *  Returns a read-only (constant) iterator that points one past the last
344  
       *  element in the %unordered_map.
345  
       */
346  
      const_iterator
347  
      end() const noexcept
348  
      { return _M_h.end(); }
349  
350  
      const_iterator
351  
      cend() const noexcept
352  
      { return _M_h.end(); }
353  
      //@}
354  
355  
      // modifiers.
356  
357  
      /**
358  
       *  @brief Attempts to build and insert a std::pair into the
359  
       *  %unordered_map.
360  
       *
361  
       *  @param __args  Arguments used to generate a new pair instance (see
362  
       *	        std::piecewise_contruct for passing arguments to each
363  
       *	        part of the pair constructor).
364  
       *
365  
       *  @return  A pair, of which the first element is an iterator that points
366  
       *           to the possibly inserted pair, and the second is a bool that
367  
       *           is true if the pair was actually inserted.
368  
       *
369  
       *  This function attempts to build and insert a (key, value) %pair into
370  
       *  the %unordered_map.
371  
       *  An %unordered_map relies on unique keys and thus a %pair is only
372  
       *  inserted if its first element (the key) is not already present in the
373  
       *  %unordered_map.
374  
       *
375  
       *  Insertion requires amortized constant time.
376  
       */
377  
      template<typename... _Args>
378  
	std::pair<iterator, bool>
379  
	emplace(_Args&&... __args)
380  
	{ return _M_h.emplace(std::forward<_Args>(__args)...); }
381  
382  
      /**
383  
       *  @brief Attempts to build and insert a std::pair into the
384  
       *  %unordered_map.
385  
       *
386  
       *  @param  __pos  An iterator that serves as a hint as to where the pair
387  
       *                should be inserted.
388  
       *  @param  __args  Arguments used to generate a new pair instance (see
389  
       *	         std::piecewise_contruct for passing arguments to each
390  
       *	         part of the pair constructor).
391  
       *  @return An iterator that points to the element with key of the
392  
       *          std::pair built from @a __args (may or may not be that
393  
       *          std::pair).
394  
       *
395  
       *  This function is not concerned about whether the insertion took place,
396  
       *  and thus does not return a boolean like the single-argument emplace()
397  
       *  does.
398  
       *  Note that the first parameter is only a hint and can potentially
399  
       *  improve the performance of the insertion process. A bad hint would
400  
       *  cause no gains in efficiency.
401  
       *
402  
       *  See
403  
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
404  
       *  for more on @a hinting.
405  
       *
406  
       *  Insertion requires amortized constant time.
407  
       */
408  
      template<typename... _Args>
409  
	iterator
410  
	emplace_hint(const_iterator __pos, _Args&&... __args)
411  
	{ return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }
412  
413  
      //@{
414  
      /**
415  
       *  @brief Attempts to insert a std::pair into the %unordered_map.
416  
417  
       *  @param __x Pair to be inserted (see std::make_pair for easy
418  
       *	     creation of pairs).
419  
       *
420  
       *  @return  A pair, of which the first element is an iterator that 
421  
       *           points to the possibly inserted pair, and the second is 
422  
       *           a bool that is true if the pair was actually inserted.
423  
       *
424  
       *  This function attempts to insert a (key, value) %pair into the
425  
       *  %unordered_map. An %unordered_map relies on unique keys and thus a
426  
       *  %pair is only inserted if its first element (the key) is not already
427  
       *  present in the %unordered_map.
428  
       *
429  
       *  Insertion requires amortized constant time.
430  
       */
431  
      std::pair<iterator, bool>
432  
      insert(const value_type& __x)
433  
      { return _M_h.insert(__x); }
434  
435  
      template<typename _Pair, typename = typename
436  
	       std::enable_if<std::is_constructible<value_type,
437  
						    _Pair&&>::value>::type>
438  
	std::pair<iterator, bool>
439  
	insert(_Pair&& __x)
440  
        { return _M_h.insert(std::forward<_Pair>(__x)); }
441  
      //@}
442  
443  
      //@{
444  
      /**
445  
       *  @brief Attempts to insert a std::pair into the %unordered_map.
446  
       *  @param  __hint  An iterator that serves as a hint as to where the
447  
       *                 pair should be inserted.
448  
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
449  
       *               of pairs).
450  
       *  @return An iterator that points to the element with key of
451  
       *           @a __x (may or may not be the %pair passed in).
452  
       *
453  
       *  This function is not concerned about whether the insertion took place,
454  
       *  and thus does not return a boolean like the single-argument insert()
455  
       *  does.  Note that the first parameter is only a hint and can
456  
       *  potentially improve the performance of the insertion process.  A bad
457  
       *  hint would cause no gains in efficiency.
458  
       *
459  
       *  See
460  
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
461  
       *  for more on @a hinting.
462  
       *
463  
       *  Insertion requires amortized constant time.
464  
       */
465  
      iterator
466  
      insert(const_iterator __hint, const value_type& __x)
467  
      { return _M_h.insert(__hint, __x); }
468  
469  
      template<typename _Pair, typename = typename
470  
	       std::enable_if<std::is_constructible<value_type,
471  
						    _Pair&&>::value>::type>
472  
	iterator
473  
	insert(const_iterator __hint, _Pair&& __x)
474  
	{ return _M_h.insert(__hint, std::forward<_Pair>(__x)); }
475  
      //@}
476  
477  
      /**
478  
       *  @brief A template function that attempts to insert a range of
479  
       *  elements.
480  
       *  @param  __first  Iterator pointing to the start of the range to be
481  
       *                   inserted.
482  
       *  @param  __last  Iterator pointing to the end of the range.
483  
       *
484  
       *  Complexity similar to that of the range constructor.
485  
       */
486  
      template<typename _InputIterator>
487  
	void
488  
	insert(_InputIterator __first, _InputIterator __last)
489  
	{ _M_h.insert(__first, __last); }
490  
491  
      /**
492  
       *  @brief Attempts to insert a list of elements into the %unordered_map.
493  
       *  @param  __l  A std::initializer_list<value_type> of elements
494  
       *               to be inserted.
495  
       *
496  
       *  Complexity similar to that of the range constructor.
497  
       */
498  
      void
499  
      insert(initializer_list<value_type> __l)
500  
      { _M_h.insert(__l); }
501  
502  
      //@{
503  
      /**
504  
       *  @brief Erases an element from an %unordered_map.
505  
       *  @param  __position  An iterator pointing to the element to be erased.
506  
       *  @return An iterator pointing to the element immediately following
507  
       *          @a __position prior to the element being erased. If no such
508  
       *          element exists, end() is returned.
509  
       *
510  
       *  This function erases an element, pointed to by the given iterator,
511  
       *  from an %unordered_map.
512  
       *  Note that this function only erases the element, and that if the
513  
       *  element is itself a pointer, the pointed-to memory is not touched in
514  
       *  any way.  Managing the pointer is the user's responsibility.
515  
       */
516  
      iterator
517  
      erase(const_iterator __position)
518  
      { return _M_h.erase(__position); }
519  
520  
      // LWG 2059.
521  
      iterator
522  
      erase(iterator __position)
523  
      { return _M_h.erase(__position); }
524  
      //@}
525  
526  
      /**
527  
       *  @brief Erases elements according to the provided key.
528  
       *  @param  __x  Key of element to be erased.
529  
       *  @return  The number of elements erased.
530  
       *
531  
       *  This function erases all the elements located by the given key from
532  
       *  an %unordered_map. For an %unordered_map the result of this function
533  
       *  can only be 0 (not present) or 1 (present).
534  
       *  Note that this function only erases the element, and that if the
535  
       *  element is itself a pointer, the pointed-to memory is not touched in
536  
       *  any way.  Managing the pointer is the user's responsibility.
537  
       */
538  
      size_type
539  
      erase(const key_type& __x)
540  
      { return _M_h.erase(__x); }
541  
542  
      /**
543  
       *  @brief Erases a [__first,__last) range of elements from an
544  
       *  %unordered_map.
545  
       *  @param  __first  Iterator pointing to the start of the range to be
546  
       *                  erased.
547  
       *  @param __last  Iterator pointing to the end of the range to
548  
       *                be erased.
549  
       *  @return The iterator @a __last.
550  
       *
551  
       *  This function erases a sequence of elements from an %unordered_map.
552  
       *  Note that this function only erases the elements, and that if
553  
       *  the element is itself a pointer, the pointed-to memory is not touched
554  
       *  in any way.  Managing the pointer is the user's responsibility.
555  
       */
556  
      iterator
557  
      erase(const_iterator __first, const_iterator __last)
558  
      { return _M_h.erase(__first, __last); }
559  
560  
      /**
561  
       *  Erases all elements in an %unordered_map.
562  
       *  Note that this function only erases the elements, and that if the
563  
       *  elements themselves are pointers, the pointed-to memory is not touched
564  
       *  in any way.  Managing the pointer is the user's responsibility.
565  
       */
566  
      void
567  
      clear() noexcept
568  
      { _M_h.clear(); }
569  
570  
      /**
571  
       *  @brief  Swaps data with another %unordered_map.
572  
       *  @param  __x  An %unordered_map of the same element and allocator
573  
       *  types.
574  
       *
575  
       *  This exchanges the elements between two %unordered_map in constant
576  
       *  time.
577  
       *  Note that the global std::swap() function is specialized such that
578  
       *  std::swap(m1,m2) will feed to this function.
579  
       */
580  
      void
581  
      swap(unordered_map& __x)
582  
      noexcept( noexcept(_M_h.swap(__x._M_h)) )
583  
      { _M_h.swap(__x._M_h); }
584  
585  
      // observers.
586  
587  
      ///  Returns the hash functor object with which the %unordered_map was
588  
      ///  constructed.
589  
      hasher
590  
      hash_function() const
591  
      { return _M_h.hash_function(); }
592  
593  
      ///  Returns the key comparison object with which the %unordered_map was
594  
      ///  constructed.
595  
      key_equal
596  
      key_eq() const
597  
      { return _M_h.key_eq(); }
598  
599  
      // lookup.
600  
601  
      //@{
602  
      /**
603  
       *  @brief Tries to locate an element in an %unordered_map.
604  
       *  @param  __x  Key to be located.
605  
       *  @return  Iterator pointing to sought-after element, or end() if not
606  
       *           found.
607  
       *
608  
       *  This function takes a key and tries to locate the element with which
609  
       *  the key matches.  If successful the function returns an iterator
610  
       *  pointing to the sought after element.  If unsuccessful it returns the
611  
       *  past-the-end ( @c end() ) iterator.
612  
       */
613  
      iterator
614  
      find(const key_type& __x)
615  
      { return _M_h.find(__x); }
616  
617  
      const_iterator
618  
      find(const key_type& __x) const
619  
      { return _M_h.find(__x); }
620  
      //@}
621  
622  
      /**
623  
       *  @brief  Finds the number of elements.
624  
       *  @param  __x  Key to count.
625  
       *  @return  Number of elements with specified key.
626  
       *
627  
       *  This function only makes sense for %unordered_multimap; for
628  
       *  %unordered_map the result will either be 0 (not present) or 1
629  
       *  (present).
630  
       */
631  
      size_type
632  
      count(const key_type& __x) const
633  
      { return _M_h.count(__x); }
634  
635  
      //@{
636  
      /**
637  
       *  @brief Finds a subsequence matching given key.
638  
       *  @param  __x  Key to be located.
639  
       *  @return  Pair of iterators that possibly points to the subsequence
640  
       *           matching given key.
641  
       *
642  
       *  This function probably only makes sense for %unordered_multimap.
643  
       */
644  
      std::pair<iterator, iterator>
645  
      equal_range(const key_type& __x)
646  
      { return _M_h.equal_range(__x); }
647  
648  
      std::pair<const_iterator, const_iterator>
649  
      equal_range(const key_type& __x) const
650  
      { return _M_h.equal_range(__x); }
651  
      //@}
652  
653  
      //@{
654  
      /**
655  
       *  @brief  Subscript ( @c [] ) access to %unordered_map data.
656  
       *  @param  __k  The key for which data should be retrieved.
657  
       *  @return  A reference to the data of the (key,data) %pair.
658  
       *
659  
       *  Allows for easy lookup with the subscript ( @c [] )operator.  Returns
660  
       *  data associated with the key specified in subscript.  If the key does
661  
       *  not exist, a pair with that key is created using default values, which
662  
       *  is then returned.
663  
       *
664  
       *  Lookup requires constant time.
665  
       */
666  
      mapped_type&
667  
      operator[](const key_type& __k)
668  
      { return _M_h[__k]; }
669  
670  
      mapped_type&
671  
      operator[](key_type&& __k)
672  
      { return _M_h[std::move(__k)]; }
673  
      //@}
674  
675  
      //@{
676  
      /**
677  
       *  @brief  Access to %unordered_map data.
678  
       *  @param  __k  The key for which data should be retrieved.
679  
       *  @return  A reference to the data whose key is equal to @a __k, if
680  
       *           such a data is present in the %unordered_map.
681  
       *  @throw  std::out_of_range  If no such data is present.
682  
       */
683  
      mapped_type&
684  
      at(const key_type& __k)
685  
      { return _M_h.at(__k); }
686  
687  
      const mapped_type&
688  
      at(const key_type& __k) const
689  
      { return _M_h.at(__k); }
690  
      //@}
691  
692  
      // bucket interface.
693  
694  
      /// Returns the number of buckets of the %unordered_map.
695  
      size_type
696  
      bucket_count() const noexcept
697  
      { return _M_h.bucket_count(); }
698  
699  
      /// Returns the maximum number of buckets of the %unordered_map.
700  
      size_type
701  
      max_bucket_count() const noexcept
702  
      { return _M_h.max_bucket_count(); }
703  
704  
      /*
705  
       * @brief  Returns the number of elements in a given bucket.
706  
       * @param  __n  A bucket index.
707  
       * @return  The number of elements in the bucket.
708  
       */
709  
      size_type
710  
      bucket_size(size_type __n) const
711  
      { return _M_h.bucket_size(__n); }
712  
713  
      /*
714  
       * @brief  Returns the bucket index of a given element.
715  
       * @param  __key  A key instance.
716  
       * @return  The key bucket index.
717  
       */
718  
      size_type
719  
      bucket(const key_type& __key) const
720  
      { return _M_h.bucket(__key); }
721  
      
722  
      /**
723  
       *  @brief  Returns a read/write iterator pointing to the first bucket
724  
       *         element.
725  
       *  @param  __n The bucket index.
726  
       *  @return  A read/write local iterator.
727  
       */
728  
      local_iterator
729  
      begin(size_type __n)
730  
      { return _M_h.begin(__n); }
731  
732  
      //@{
733  
      /**
734  
       *  @brief  Returns a read-only (constant) iterator pointing to the first
735  
       *         bucket element.
736  
       *  @param  __n The bucket index.
737  
       *  @return  A read-only local iterator.
738  
       */
739  
      const_local_iterator
740  
      begin(size_type __n) const
741  
      { return _M_h.begin(__n); }
742  
743  
      const_local_iterator
744  
      cbegin(size_type __n) const
745  
      { return _M_h.cbegin(__n); }
746  
      //@}
747  
748  
      /**
749  
       *  @brief  Returns a read/write iterator pointing to one past the last
750  
       *         bucket elements.
751  
       *  @param  __n The bucket index.
752  
       *  @return  A read/write local iterator.
753  
       */
754  
      local_iterator
755  
      end(size_type __n)
756  
      { return _M_h.end(__n); }
757  
758  
      //@{
759  
      /**
760  
       *  @brief  Returns a read-only (constant) iterator pointing to one past
761  
       *         the last bucket elements.
762  
       *  @param  __n The bucket index.
763  
       *  @return  A read-only local iterator.
764  
       */
765  
      const_local_iterator
766  
      end(size_type __n) const
767  
      { return _M_h.end(__n); }
768  
769  
      const_local_iterator
770  
      cend(size_type __n) const
771  
      { return _M_h.cend(__n); }
772  
      //@}
773  
774  
      // hash policy.
775  
776  
      /// Returns the average number of elements per bucket.
777  
      float
778  
      load_factor() const noexcept
779  
      { return _M_h.load_factor(); }
780  
781  
      /// Returns a positive number that the %unordered_map tries to keep the
782  
      /// load factor less than or equal to.
783  
      float
784  
      max_load_factor() const noexcept
785  
      { return _M_h.max_load_factor(); }
786  
787  
      /**
788  
       *  @brief  Change the %unordered_map maximum load factor.
789  
       *  @param  __z The new maximum load factor.
790  
       */
791  
      void
792  
      max_load_factor(float __z)
793  
      { _M_h.max_load_factor(__z); }
794  
795  
      /**
796  
       *  @brief  May rehash the %unordered_map.
797  
       *  @param  __n The new number of buckets.
798  
       *
799  
       *  Rehash will occur only if the new number of buckets respect the
800  
       *  %unordered_map maximum load factor.
801  
       */
802  
      void
803  
      rehash(size_type __n)
804  
      { _M_h.rehash(__n); }
805  
806  
      /**
807  
       *  @brief  Prepare the %unordered_map for a specified number of
808  
       *          elements.
809  
       *  @param  __n Number of elements required.
810  
       *
811  
       *  Same as rehash(ceil(n / max_load_factor())).
812  
       */
813  
      void
814  
      reserve(size_type __n)
815  
      { _M_h.reserve(__n); }
816  
817  
      template<typename _Key1, typename _Tp1, typename _Hash1, typename _Pred1,
818  
	       typename _Alloc1>
819  
        friend bool
820  
      operator==(const unordered_map<_Key1, _Tp1, _Hash1, _Pred1, _Alloc1>&,
821  
		 const unordered_map<_Key1, _Tp1, _Hash1, _Pred1, _Alloc1>&);
822  
    };
823  
824  
  /**
825  
   *  @brief A standard container composed of equivalent keys
826  
   *  (possibly containing multiple of each key value) that associates
827  
   *  values of another type with the keys.
828  
   *
829  
   *  @ingroup unordered_associative_containers
830  
   *
831  
   *  @tparam  _Key    Type of key objects.
832  
   *  @tparam  _Tp     Type of mapped objects.
833  
   *  @tparam  _Hash   Hashing function object type, defaults to hash<_Value>.
834  
   *  @tparam  _Pred   Predicate function object type, defaults
835  
   *                   to equal_to<_Value>.
836  
   *  @tparam  _Alloc  Allocator type, defaults to
837  
   *                   std::allocator<std::pair<const _Key, _Tp>>.
838  
   *
839  
   *  Meets the requirements of a <a href="tables.html#65">container</a>, and
840  
   *  <a href="tables.html#xx">unordered associative container</a>
841  
   *
842  
   * The resulting value type of the container is std::pair<const _Key, _Tp>.
843  
   *
844  
   *  Base is _Hashtable, dispatched at compile time via template
845  
   *  alias __ummap_hashtable.
846  
   */
847  
  template<class _Key, class _Tp,
848  
	   class _Hash = hash<_Key>,
849  
	   class _Pred = std::equal_to<_Key>,
850  
	   class _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
851  
    class unordered_multimap
852  
    {
853  
      typedef __ummap_hashtable<_Key, _Tp, _Hash, _Pred, _Alloc>  _Hashtable;
854  
      _Hashtable _M_h;
855  
856  
    public:
857  
      // typedefs:
858  
      //@{
859  
      /// Public typedefs.
860  
      typedef typename _Hashtable::key_type	key_type;
861  
      typedef typename _Hashtable::value_type	value_type;
862  
      typedef typename _Hashtable::mapped_type	mapped_type;
863  
      typedef typename _Hashtable::hasher	hasher;
864  
      typedef typename _Hashtable::key_equal	key_equal;
865  
      typedef typename _Hashtable::allocator_type allocator_type;
866  
      //@}
867  
868  
      //@{
869  
      ///  Iterator-related typedefs.
870  
      typedef typename _Hashtable::pointer		pointer;
871  
      typedef typename _Hashtable::const_pointer	const_pointer;
872  
      typedef typename _Hashtable::reference		reference;
873  
      typedef typename _Hashtable::const_reference	const_reference;
874  
      typedef typename _Hashtable::iterator		iterator;
875  
      typedef typename _Hashtable::const_iterator	const_iterator;
876  
      typedef typename _Hashtable::local_iterator	local_iterator;
877  
      typedef typename _Hashtable::const_local_iterator	const_local_iterator;
878  
      typedef typename _Hashtable::size_type		size_type;
879  
      typedef typename _Hashtable::difference_type	difference_type;
880  
      //@}
881  
882  
      //construct/destroy/copy
883  
884  
      /// Default constructor.
885  
      unordered_multimap() = default;
886  
887  
      /**
888  
       *  @brief  Default constructor creates no elements.
889  
       *  @param __n  Mnimal initial number of buckets.
890  
       *  @param __hf  A hash functor.
891  
       *  @param __eql  A key equality functor.
892  
       *  @param __a  An allocator object.
893  
       */
894  
      explicit
895  
      unordered_multimap(size_type __n,
896  
			 const hasher& __hf = hasher(),
897  
			 const key_equal& __eql = key_equal(),
898  
			 const allocator_type& __a = allocator_type())
899  
      : _M_h(__n, __hf, __eql, __a)
900  
      { }
901  
902  
      /**
903  
       *  @brief  Builds an %unordered_multimap from a range.
904  
       *  @param  __first An input iterator.
905  
       *  @param  __last  An input iterator.
906  
       *  @param __n      Minimal initial number of buckets.
907  
       *  @param __hf     A hash functor.
908  
       *  @param __eql    A key equality functor.
909  
       *  @param __a      An allocator object.
910  
       *
911  
       *  Create an %unordered_multimap consisting of copies of the elements
912  
       *  from [__first,__last).  This is linear in N (where N is
913  
       *  distance(__first,__last)).
914  
       */
915  
      template<typename _InputIterator>
916  
	unordered_multimap(_InputIterator __first, _InputIterator __last,
917  
			   size_type __n = 0,
918  
			   const hasher& __hf = hasher(),
919  
			   const key_equal& __eql = key_equal(),
920  
			   const allocator_type& __a = allocator_type())
921  
	: _M_h(__first, __last, __n, __hf, __eql, __a)
922  
	{ }
923  
924  
      /// Copy constructor.
925  
      unordered_multimap(const unordered_multimap&) = default;
926  
927  
      /// Move constructor.
928  
      unordered_multimap(unordered_multimap&&) = default;
929  
930  
      /**
931  
       *  @brief Creates an %unordered_multimap with no elements.
932  
       *  @param __a An allocator object.
933  
       */
934  
      explicit
935  
      unordered_multimap(const allocator_type& __a)
936  
      : _M_h(__a)
937  
      { }
938  
939  
      /*
940  
       *  @brief Copy constructor with allocator argument.
941  
       * @param  __uset  Input %unordered_multimap to copy.
942  
       * @param  __a  An allocator object.
943  
       */
944  
      unordered_multimap(const unordered_multimap& __ummap,
945  
			 const allocator_type& __a)
946  
      : _M_h(__ummap._M_h, __a)
947  
      { }
948  
949  
      /*
950  
       *  @brief  Move constructor with allocator argument.
951  
       *  @param  __uset Input %unordered_multimap to move.
952  
       *  @param  __a    An allocator object.
953  
       */
954  
      unordered_multimap(unordered_multimap&& __ummap,
955  
			 const allocator_type& __a)
956  
      : _M_h(std::move(__ummap._M_h), __a)
957  
      { }
958  
959  
      /**
960  
       *  @brief  Builds an %unordered_multimap from an initializer_list.
961  
       *  @param  __l  An initializer_list.
962  
       *  @param __n  Minimal initial number of buckets.
963  
       *  @param __hf  A hash functor.
964  
       *  @param __eql  A key equality functor.
965  
       *  @param  __a  An allocator object.
966  
       *
967  
       *  Create an %unordered_multimap consisting of copies of the elements in
968  
       *  the list. This is linear in N (where N is @a __l.size()).
969  
       */
970  
      unordered_multimap(initializer_list<value_type> __l,
971  
			 size_type __n = 0,
972  
			 const hasher& __hf = hasher(),
973  
			 const key_equal& __eql = key_equal(),
974  
			 const allocator_type& __a = allocator_type())
975  
      : _M_h(__l, __n, __hf, __eql, __a)
976  
      { }
977  
978  
      unordered_multimap(size_type __n, const allocator_type& __a)
979  
      : unordered_multimap(__n, hasher(), key_equal(), __a)
980  
      { }
981  
982  
      unordered_multimap(size_type __n, const hasher& __hf,
983  
			 const allocator_type& __a)
984  
      : unordered_multimap(__n, __hf, key_equal(), __a)
985  
      { }
986  
987  
      template<typename _InputIterator>
988  
	unordered_multimap(_InputIterator __first, _InputIterator __last,
989  
			   size_type __n,
990  
			   const allocator_type& __a)
991  
	: unordered_multimap(__first, __last, __n, hasher(), key_equal(), __a)
992  
	{ }
993  
994  
      template<typename _InputIterator>
995  
	unordered_multimap(_InputIterator __first, _InputIterator __last,
996  
			   size_type __n, const hasher& __hf,
997  
			   const allocator_type& __a)
998  
	: unordered_multimap(__first, __last, __n, __hf, key_equal(), __a)
999  
	{ }
1000  
1001  
      unordered_multimap(initializer_list<value_type> __l,
1002  
			 size_type __n,
1003  
			 const allocator_type& __a)
1004  
      : unordered_multimap(__l, __n, hasher(), key_equal(), __a)
1005  
      { }
1006  
1007  
      unordered_multimap(initializer_list<value_type> __l,
1008  
			 size_type __n, const hasher& __hf,
1009  
			 const allocator_type& __a)
1010  
      : unordered_multimap(__l, __n, __hf, key_equal(), __a)
1011  
      { }
1012  
1013  
      /// Copy assignment operator.
1014  
      unordered_multimap&
1015  
      operator=(const unordered_multimap&) = default;
1016  
1017  
      /// Move assignment operator.
1018  
      unordered_multimap&
1019  
      operator=(unordered_multimap&&) = default;
1020  
1021  
      /**
1022  
       *  @brief  %Unordered_multimap list assignment operator.
1023  
       *  @param  __l  An initializer_list.
1024  
       *
1025  
       *  This function fills an %unordered_multimap with copies of the elements
1026  
       *  in the initializer list @a __l.
1027  
       *
1028  
       *  Note that the assignment completely changes the %unordered_multimap
1029  
       *  and that the resulting %unordered_multimap's size is the same as the
1030  
       *  number of elements assigned.  Old data may be lost.
1031  
       */
1032  
      unordered_multimap&
1033  
      operator=(initializer_list<value_type> __l)
1034  
      {
1035  
	_M_h = __l;
1036  
	return *this;
1037  
      }
1038  
1039  
      ///  Returns the allocator object with which the %unordered_multimap was
1040  
      ///  constructed.
1041  
      allocator_type
1042  
      get_allocator() const noexcept
1043  
      { return _M_h.get_allocator(); }
1044  
1045  
      // size and capacity:
1046  
1047  
      ///  Returns true if the %unordered_multimap is empty.
1048  
      bool
1049  
      empty() const noexcept
1050  
      { return _M_h.empty(); }
1051  
1052  
      ///  Returns the size of the %unordered_multimap.
1053  
      size_type
1054  
      size() const noexcept
1055  
      { return _M_h.size(); }
1056  
1057  
      ///  Returns the maximum size of the %unordered_multimap.
1058  
      size_type
1059  
      max_size() const noexcept
1060  
      { return _M_h.max_size(); }
1061  
1062  
      // iterators.
1063  
1064  
      /**
1065  
       *  Returns a read/write iterator that points to the first element in the
1066  
       *  %unordered_multimap.
1067  
       */
1068  
      iterator
1069  
      begin() noexcept
1070  
      { return _M_h.begin(); }
1071  
1072  
      //@{
1073  
      /**
1074  
       *  Returns a read-only (constant) iterator that points to the first
1075  
       *  element in the %unordered_multimap.
1076  
       */
1077  
      const_iterator
1078  
      begin() const noexcept
1079  
      { return _M_h.begin(); }
1080  
1081  
      const_iterator
1082  
      cbegin() const noexcept
1083  
      { return _M_h.begin(); }
1084  
      //@}
1085  
1086  
      /**
1087  
       *  Returns a read/write iterator that points one past the last element in
1088  
       *  the %unordered_multimap.
1089  
       */
1090  
      iterator
1091  
      end() noexcept
1092  
      { return _M_h.end(); }
1093  
1094  
      //@{
1095  
      /**
1096  
       *  Returns a read-only (constant) iterator that points one past the last
1097  
       *  element in the %unordered_multimap.
1098  
       */
1099  
      const_iterator
1100  
      end() const noexcept
1101  
      { return _M_h.end(); }
1102  
1103  
      const_iterator
1104  
      cend() const noexcept
1105  
      { return _M_h.end(); }
1106  
      //@}
1107  
1108  
      // modifiers.
1109  
1110  
      /**
1111  
       *  @brief Attempts to build and insert a std::pair into the
1112  
       *  %unordered_multimap.
1113  
       *
1114  
       *  @param __args  Arguments used to generate a new pair instance (see
1115  
       *	        std::piecewise_contruct for passing arguments to each
1116  
       *	        part of the pair constructor).
1117  
       *
1118  
       *  @return  An iterator that points to the inserted pair.
1119  
       *
1120  
       *  This function attempts to build and insert a (key, value) %pair into
1121  
       *  the %unordered_multimap.
1122  
       *
1123  
       *  Insertion requires amortized constant time.
1124  
       */
1125  
      template<typename... _Args>
1126  
	iterator
1127  
	emplace(_Args&&... __args)
1128  
	{ return _M_h.emplace(std::forward<_Args>(__args)...); }
1129  
1130  
      /**
1131  
       *  @brief Attempts to build and insert a std::pair into the
1132  
       *  %unordered_multimap.
1133  
       *
1134  
       *  @param  __pos  An iterator that serves as a hint as to where the pair
1135  
       *                should be inserted.
1136  
       *  @param  __args  Arguments used to generate a new pair instance (see
1137  
       *	         std::piecewise_contruct for passing arguments to each
1138  
       *	         part of the pair constructor).
1139  
       *  @return An iterator that points to the element with key of the
1140  
       *          std::pair built from @a __args.
1141  
       *
1142  
       *  Note that the first parameter is only a hint and can potentially
1143  
       *  improve the performance of the insertion process. A bad hint would
1144  
       *  cause no gains in efficiency.
1145  
       *
1146  
       *  See
1147  
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
1148  
       *  for more on @a hinting.
1149  
       *
1150  
       *  Insertion requires amortized constant time.
1151  
       */
1152  
      template<typename... _Args>
1153  
	iterator
1154  
	emplace_hint(const_iterator __pos, _Args&&... __args)
1155  
	{ return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }
1156  
1157  
      //@{
1158  
      /**
1159  
       *  @brief Inserts a std::pair into the %unordered_multimap.
1160  
       *  @param __x Pair to be inserted (see std::make_pair for easy
1161  
       *	     creation of pairs).
1162  
       *
1163  
       *  @return  An iterator that points to the inserted pair.
1164  
       *
1165  
       *  Insertion requires amortized constant time.
1166  
       */
1167  
      iterator
1168  
      insert(const value_type& __x)
1169  
      { return _M_h.insert(__x); }
1170  
1171  
      template<typename _Pair, typename = typename
1172  
	       std::enable_if<std::is_constructible<value_type,
1173  
						    _Pair&&>::value>::type>
1174  
	iterator
1175  
	insert(_Pair&& __x)
1176  
        { return _M_h.insert(std::forward<_Pair>(__x)); }
1177  
      //@}
1178  
1179  
      //@{
1180  
      /**
1181  
       *  @brief Inserts a std::pair into the %unordered_multimap.
1182  
       *  @param  __hint  An iterator that serves as a hint as to where the
1183  
       *                 pair should be inserted.
1184  
       *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
1185  
       *               of pairs).
1186  
       *  @return An iterator that points to the element with key of
1187  
       *           @a __x (may or may not be the %pair passed in).
1188  
       *
1189  
       *  Note that the first parameter is only a hint and can potentially
1190  
       *  improve the performance of the insertion process.  A bad hint would
1191  
       *  cause no gains in efficiency.
1192  
       *
1193  
       *  See
1194  
       *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
1195  
       *  for more on @a hinting.
1196  
       *
1197  
       *  Insertion requires amortized constant time.
1198  
       */
1199  
      iterator
1200  
      insert(const_iterator __hint, const value_type& __x)
1201  
      { return _M_h.insert(__hint, __x); }
1202  
1203  
      template<typename _Pair, typename = typename
1204  
	       std::enable_if<std::is_constructible<value_type,
1205  
						    _Pair&&>::value>::type>
1206  
	iterator
1207  
	insert(const_iterator __hint, _Pair&& __x)
1208  
        { return _M_h.insert(__hint, std::forward<_Pair>(__x)); }
1209  
      //@}
1210  
1211  
      /**
1212  
       *  @brief A template function that attempts to insert a range of
1213  
       *  elements.
1214  
       *  @param  __first  Iterator pointing to the start of the range to be
1215  
       *                   inserted.
1216  
       *  @param  __last  Iterator pointing to the end of the range.
1217  
       *
1218  
       *  Complexity similar to that of the range constructor.
1219  
       */
1220  
      template<typename _InputIterator>
1221  
	void
1222  
	insert(_InputIterator __first, _InputIterator __last)
1223  
	{ _M_h.insert(__first, __last); }
1224  
1225  
      /**
1226  
       *  @brief Attempts to insert a list of elements into the
1227  
       *  %unordered_multimap.
1228  
       *  @param  __l  A std::initializer_list<value_type> of elements
1229  
       *               to be inserted.
1230  
       *
1231  
       *  Complexity similar to that of the range constructor.
1232  
       */
1233  
      void
1234  
      insert(initializer_list<value_type> __l)
1235  
      { _M_h.insert(__l); }
1236  
1237  
      //@{
1238  
      /**
1239  
       *  @brief Erases an element from an %unordered_multimap.
1240  
       *  @param  __position  An iterator pointing to the element to be erased.
1241  
       *  @return An iterator pointing to the element immediately following
1242  
       *          @a __position prior to the element being erased. If no such
1243  
       *          element exists, end() is returned.
1244  
       *
1245  
       *  This function erases an element, pointed to by the given iterator,
1246  
       *  from an %unordered_multimap.
1247  
       *  Note that this function only erases the element, and that if the
1248  
       *  element is itself a pointer, the pointed-to memory is not touched in
1249  
       *  any way.  Managing the pointer is the user's responsibility.
1250  
       */
1251  
      iterator
1252  
      erase(const_iterator __position)
1253  
      { return _M_h.erase(__position); }
1254  
1255  
      // LWG 2059.
1256  
      iterator
1257  
      erase(iterator __position)
1258  
      { return _M_h.erase(__position); }
1259  
      //@}
1260  
1261  
      /**
1262  
       *  @brief Erases elements according to the provided key.
1263  
       *  @param  __x  Key of elements to be erased.
1264  
       *  @return  The number of elements erased.
1265  
       *
1266  
       *  This function erases all the elements located by the given key from
1267  
       *  an %unordered_multimap.
1268  
       *  Note that this function only erases the element, and that if the
1269  
       *  element is itself a pointer, the pointed-to memory is not touched in
1270  
       *  any way.  Managing the pointer is the user's responsibility.
1271  
       */
1272  
      size_type
1273  
      erase(const key_type& __x)
1274  
      { return _M_h.erase(__x); }
1275  
1276  
      /**
1277  
       *  @brief Erases a [__first,__last) range of elements from an
1278  
       *  %unordered_multimap.
1279  
       *  @param  __first  Iterator pointing to the start of the range to be
1280  
       *                  erased.
1281  
       *  @param __last  Iterator pointing to the end of the range to
1282  
       *                be erased.
1283  
       *  @return The iterator @a __last.
1284  
       *
1285  
       *  This function erases a sequence of elements from an
1286  
       *  %unordered_multimap.
1287  
       *  Note that this function only erases the elements, and that if
1288  
       *  the element is itself a pointer, the pointed-to memory is not touched
1289  
       *  in any way.  Managing the pointer is the user's responsibility.
1290  
       */
1291  
      iterator
1292  
      erase(const_iterator __first, const_iterator __last)
1293  
      { return _M_h.erase(__first, __last); }
1294  
1295  
      /**
1296  
       *  Erases all elements in an %unordered_multimap.
1297  
       *  Note that this function only erases the elements, and that if the
1298  
       *  elements themselves are pointers, the pointed-to memory is not touched
1299  
       *  in any way.  Managing the pointer is the user's responsibility.
1300  
       */
1301  
      void
1302  
      clear() noexcept
1303  
      { _M_h.clear(); }
1304  
1305  
      /**
1306  
       *  @brief  Swaps data with another %unordered_multimap.
1307  
       *  @param  __x  An %unordered_multimap of the same element and allocator
1308  
       *  types.
1309  
       *
1310  
       *  This exchanges the elements between two %unordered_multimap in
1311  
       *  constant time.
1312  
       *  Note that the global std::swap() function is specialized such that
1313  
       *  std::swap(m1,m2) will feed to this function.
1314  
       */
1315  
      void
1316  
      swap(unordered_multimap& __x)
1317  
      noexcept( noexcept(_M_h.swap(__x._M_h)) )
1318  
      { _M_h.swap(__x._M_h); }
1319  
1320  
      // observers.
1321  
1322  
      ///  Returns the hash functor object with which the %unordered_multimap
1323  
      ///  was constructed.
1324  
      hasher
1325  
      hash_function() const
1326  
      { return _M_h.hash_function(); }
1327  
1328  
      ///  Returns the key comparison object with which the %unordered_multimap
1329  
      ///  was constructed.
1330  
      key_equal
1331  
      key_eq() const
1332  
      { return _M_h.key_eq(); }
1333  
1334  
      // lookup.
1335  
1336  
      //@{
1337  
      /**
1338  
       *  @brief Tries to locate an element in an %unordered_multimap.
1339  
       *  @param  __x  Key to be located.
1340  
       *  @return  Iterator pointing to sought-after element, or end() if not
1341  
       *           found.
1342  
       *
1343  
       *  This function takes a key and tries to locate the element with which
1344  
       *  the key matches.  If successful the function returns an iterator
1345  
       *  pointing to the sought after element.  If unsuccessful it returns the
1346  
       *  past-the-end ( @c end() ) iterator.
1347  
       */
1348  
      iterator
1349  
      find(const key_type& __x)
1350  
      { return _M_h.find(__x); }
1351  
1352  
      const_iterator
1353  
      find(const key_type& __x) const
1354  
      { return _M_h.find(__x); }
1355  
      //@}
1356  
1357  
      /**
1358  
       *  @brief  Finds the number of elements.
1359  
       *  @param  __x  Key to count.
1360  
       *  @return  Number of elements with specified key.
1361  
       */
1362  
      size_type
1363  
      count(const key_type& __x) const
1364  
      { return _M_h.count(__x); }
1365  
1366  
      //@{
1367  
      /**
1368  
       *  @brief Finds a subsequence matching given key.
1369  
       *  @param  __x  Key to be located.
1370  
       *  @return  Pair of iterators that possibly points to the subsequence
1371  
       *           matching given key.
1372  
       */
1373  
      std::pair<iterator, iterator>
1374  
      equal_range(const key_type& __x)
1375  
      { return _M_h.equal_range(__x); }
1376  
1377  
      std::pair<const_iterator, const_iterator>
1378  
      equal_range(const key_type& __x) const
1379  
      { return _M_h.equal_range(__x); }
1380  
      //@}
1381  
1382  
      // bucket interface.
1383  
1384  
      /// Returns the number of buckets of the %unordered_multimap.
1385  
      size_type
1386  
      bucket_count() const noexcept
1387  
      { return _M_h.bucket_count(); }
1388  
1389  
      /// Returns the maximum number of buckets of the %unordered_multimap.
1390  
      size_type
1391  
      max_bucket_count() const noexcept
1392  
      { return _M_h.max_bucket_count(); }
1393  
1394  
      /*
1395  
       * @brief  Returns the number of elements in a given bucket.
1396  
       * @param  __n  A bucket index.
1397  
       * @return  The number of elements in the bucket.
1398  
       */
1399  
      size_type
1400  
      bucket_size(size_type __n) const
1401  
      { return _M_h.bucket_size(__n); }
1402  
1403  
      /*
1404  
       * @brief  Returns the bucket index of a given element.
1405  
       * @param  __key  A key instance.
1406  
       * @return  The key bucket index.
1407  
       */
1408  
      size_type
1409  
      bucket(const key_type& __key) const
1410  
      { return _M_h.bucket(__key); }
1411  
      
1412  
      /**
1413  
       *  @brief  Returns a read/write iterator pointing to the first bucket
1414  
       *         element.
1415  
       *  @param  __n The bucket index.
1416  
       *  @return  A read/write local iterator.
1417  
       */
1418  
      local_iterator
1419  
      begin(size_type __n)
1420  
      { return _M_h.begin(__n); }
1421  
1422  
      //@{
1423  
      /**
1424  
       *  @brief  Returns a read-only (constant) iterator pointing to the first
1425  
       *         bucket element.
1426  
       *  @param  __n The bucket index.
1427  
       *  @return  A read-only local iterator.
1428  
       */
1429  
      const_local_iterator
1430  
      begin(size_type __n) const
1431  
      { return _M_h.begin(__n); }
1432  
1433  
      const_local_iterator
1434  
      cbegin(size_type __n) const
1435  
      { return _M_h.cbegin(__n); }
1436  
      //@}
1437  
1438  
      /**
1439  
       *  @brief  Returns a read/write iterator pointing to one past the last
1440  
       *         bucket elements.
1441  
       *  @param  __n The bucket index.
1442  
       *  @return  A read/write local iterator.
1443  
       */
1444  
      local_iterator
1445  
      end(size_type __n)
1446  
      { return _M_h.end(__n); }
1447  
1448  
      //@{
1449  
      /**
1450  
       *  @brief  Returns a read-only (constant) iterator pointing to one past
1451  
       *         the last bucket elements.
1452  
       *  @param  __n The bucket index.
1453  
       *  @return  A read-only local iterator.
1454  
       */
1455  
      const_local_iterator
1456  
      end(size_type __n) const
1457  
      { return _M_h.end(__n); }
1458  
1459  
      const_local_iterator
1460  
      cend(size_type __n) const
1461  
      { return _M_h.cend(__n); }
1462  
      //@}
1463  
1464  
      // hash policy.
1465  
1466  
      /// Returns the average number of elements per bucket.
1467  
      float
1468  
      load_factor() const noexcept
1469  
      { return _M_h.load_factor(); }
1470  
1471  
      /// Returns a positive number that the %unordered_multimap tries to keep
1472  
      /// the load factor less than or equal to.
1473  
      float
1474  
      max_load_factor() const noexcept
1475  
      { return _M_h.max_load_factor(); }
1476  
1477  
      /**
1478  
       *  @brief  Change the %unordered_multimap maximum load factor.
1479  
       *  @param  __z The new maximum load factor.
1480  
       */
1481  
      void
1482  
      max_load_factor(float __z)
1483  
      { _M_h.max_load_factor(__z); }
1484  
1485  
      /**
1486  
       *  @brief  May rehash the %unordered_multimap.
1487  
       *  @param  __n The new number of buckets.
1488  
       *
1489  
       *  Rehash will occur only if the new number of buckets respect the
1490  
       *  %unordered_multimap maximum load factor.
1491  
       */
1492  
      void
1493  
      rehash(size_type __n)
1494  
      { _M_h.rehash(__n); }
1495  
1496  
      /**
1497  
       *  @brief  Prepare the %unordered_multimap for a specified number of
1498  
       *          elements.
1499  
       *  @param  __n Number of elements required.
1500  
       *
1501  
       *  Same as rehash(ceil(n / max_load_factor())).
1502  
       */
1503  
      void
1504  
      reserve(size_type __n)
1505  
      { _M_h.reserve(__n); }
1506  
1507  
      template<typename _Key1, typename _Tp1, typename _Hash1, typename _Pred1,
1508  
	       typename _Alloc1>
1509  
        friend bool
1510  
	operator==(const unordered_multimap<_Key1, _Tp1,
1511  
					    _Hash1, _Pred1, _Alloc1>&,
1512  
		   const unordered_multimap<_Key1, _Tp1,
1513  
					    _Hash1, _Pred1, _Alloc1>&);
1514  
    };
1515  
1516  
  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
1517  
    inline void
1518  
    swap(unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
1519  
	 unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
1520  
    { __x.swap(__y); }
1521  
1522  
  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
1523  
    inline void
1524  
    swap(unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
1525  
	 unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
1526  
    { __x.swap(__y); }
1527  
1528  
  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
1529  
    inline bool
1530  
    operator==(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
1531  
	       const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
1532  
    { return __x._M_h._M_equal(__y._M_h); }
1533  
1534  
  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
1535  
    inline bool
1536  
    operator!=(const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
1537  
	       const unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
1538  
    { return !(__x == __y); }
1539  
1540  
  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
1541  
    inline bool
1542  
    operator==(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
1543  
	       const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
1544  
    { return __x._M_h._M_equal(__y._M_h); }
1545  
1546  
  template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
1547  
    inline bool
1548  
    operator!=(const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
1549  
	       const unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
1550  
    { return !(__x == __y); }
1551  
1552  
_GLIBCXX_END_NAMESPACE_CONTAINER
1553  
} // namespace std
1554  
1555  
#endif /* _UNORDERED_MAP_H */
1556  

Copyright (c) 2006-2012 Rogue Wave Software, Inc. All Rights Reserved.
Patents pending.