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I. INTRODUCTION

Performance data refers to the data collected to describe
program execution. It includes quantities such as performance
counters, time elapsed in subroutines, etc. Significant analysis
of this performance data is commonplace when running sim-
ulations on supercomputers, as the gains from such analysis
can lead to significant improvements in execution time, and
thus increases in the capacity of the supercomputer itself.

Performance data can be hard to interpret, and signifi-
cant effort has gone into finding insightful ways to present
it. Visualization is an obvious approach, since the human
visual system is able to absorb information at very high
rates. The visualization field is frequently segmented into
two sub-disciplines — scientific visualization and information
visualization — with visualization of performance data often
utilizing information visualization techniques. The primary
distinction between the two sub-disciplines is that scientific
data normally has an implied spatial layout, while informa-
tion visualization data does not. With scientific visualization,
techniques can exploit the spatial properties of the information
(meshes, grids, vectors, tensors, etc.) and utilize the three-
dimensional capabilities of todays graphics engines to help
visually present their analysis. The types of data associated
with scientific visualization are often ‘“‘scientific” in nature:
engineering, climate, and medical data, etc. With information
visualization, the data has no accompanying spatial informa-
tion, and so the resulting visualizations have more flexibility
in how to arrange data. The types of data associated with
information visualization are diverse: tax records, twitter feed
information, network usage statistics, etc. For both scientific
visualization and information visualization, however, the goal
is to enable insight into data.

With this work, we explore the topic of scientific visualiza-
tion combined with performance data. The intuition behind
the work is that a strictly information visualization-based
approach can sometimes fail to convey important information
about context. By complementing traditional approaches with
scientific visualization techniques that show performance data
in the spatial context of the simulation, additional insights can
be gained that are difficult to infer otherwise.

The contribution of this paper is two-fold:

o to add to the evidence that scientific visualization can be
helpful in understanding performance data, and

e to explore the costs and approaches of linking perfor-
mance data with scientific visualization tools.

Regarding the linking, we are motivated by the costs
involved with building a system. The cost to extract and
categorize performance data is high, as is the cost to im-
plement scientific visualization systems. Therefore, we view
an approach that can leverage existing systems as paramount.
Further, our findings demonstrate that linking these systems
together can be done in a straight-forward way, requiring only
modest effort and yielding significant benefit.

II. A HISTORICAL PERSPECTIVE

There has been interest in the use of graphical and visu-
alization techniques to understand parallel performance data
since scalable parallel systems began to appear [1], [2].
Many of the motivations for performance visualization then —
increasing performance data size, more complex performance
phenomena, systems scalability, power of visual analysis —
are the same ones that drive the research today. The early
work in the field pioneered approaches with respect to both
effective presentation of performance information [3], [4], [5]
as well as how to develop tools incorporating visualization
capabilities [6], [7], [8]. While the challenges facing parallel
performance analysis now are arguably more daunting than
20+ years ago, there are useful concepts that carry forward to
help inform the research today.

A conceptual design architecture for a parallel performance
visualization system is shown in Figure 1 [9]. The main idea
is that performance visualizations are a product of two key
components. The first component is focused on defining the
performance analysis abstractions that are of interest in being
portrayed using performance visual abstractions where the as-
sociation between the two are linked by semantic relationships.
These abstractions are then translated into specifications for
performance views and displays and the mappings between
the two. The second component is the instantiation of the joint
specification into a working visualization tool that leverages
alternative technologies where available. The separation of
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Fig. 1. Design architecture for parallel performance visualization systems.

concerns between the two components is important for evolv-
ing the performance visualization methods and improving the
development of visualization techniques in real tools.

Good performance visualization is a design process. The
goal is to associate certain properties of the performance analy-
sis (as understood by the user) with graphical representations
that have both good visual form and effective presentation.
General visualization principles and graphics techniges can
help, but it does not directly solve the performance view
creation problem. Early research experience was a product
of experimenting with different parallel performance analysis
and visualization abstractions and then attempting to extract
constructive guidelines for good performance visualization
development [10]. Although they may seem intuitive, it is
instructive to consider them in the context of current require-
ments:

Multiple views. A visualization should provide different levels
of observation and different perspectives (a set of views).
Multiple dimensions of performance information may require
a variety of visual perspectives.

Semantic context. The intent of visualization is to improve
performance data understanding. Semantic context (e.g., pro-
gram control, data abstractions, programming model, system
mapping, runtime operation, computational behavior) can be
important in visualizations with respect to how the structure,
graphics, interactions, correlation to other displays, and visual
features are interpreted.

User interaction. Involving the user in selection, control of
detail, changing of parameters, and other interaction can be
important to explore performance aspects in a visualization.

In addition to guidelines for good visualization design, there
were recommendations for developing scalable visualization
methods that resulted from former research projects. These
included [4], [8], [10]:

Adaptive graphical representation. Present the performance
to reveal detail, but prevent visual complexity from interfering
with the perception of that detail.

Reduction and filtering. Use a summarized version of the

raw data to show less detailed information as a way to reduce
the complexity of the visualization at the level of graphical
representation.

Spatial organization. Arrange graphical elements spatially so
that as a dataset scales, the display size and/or complexity
increase at a much slower rate, using other graphical tech-
niques (e.g., coloring, annotation) to portray performance data
characteristics.

Generalized scrolling. Present a continuous, localized view
of a much larger mass of information to allow viewing of
greater, while maintaining continuity (temporal and spatial)
with nearby performance information.

Prior work also raised issues of building general visual-
ization solutions versus the usability of any particular perfor-
mance visualization outcome. Miller addressed some of these
in his essay “What to Draw? When to Draw? An Essay on
Parallel Program Visualization” where he attempted to define
general requirements that will help guide the visualization
designer to create effective visual displays [5].

III. BACKGROUND
A. Vislt
Hank : Text about Vislt.

B. TAU

The performance tool used for this approach is the TAU
Performance System® [11]. TAU is a portable profiling and
tracing toolkit for performance analysis of parallel programs
written in Fortran, C, C++ , Python and Java, running on a
variety of shared and distributed memory parallel architectures
including message passing libraries (i.e. MPI) and Partitioned
Global Address Spaces (PGAS, co-arrays). TAU provides
different means for instrumentation (source, library, binary)
and is capable of gathering performance information (time,
hardware counters) about functions, methods, basic blocks
and statements as well as periodic sampling and metadata
collection. TAU is distributed with profile and trace anal-
ysis tools, a performance database, and a multi-experiment
data mining package called PerfExplorer [12]. PerfExplorer
includes a Python interpreter for automating analysis, custom
post-processing of data and other transformations including
exporting data from the profile. : need more text about
TAU and PerfExplorer?

C. MPAS-Ocean

The Model for Prediction Across Scales (MPAS) [13] is a
framework project jointly developed by the National Center for
Atmospheric Research (NCAR) and Los Alamos National Lab
(LANL) in the United States. The framework is designed to
perform rapid prototyping of single-component climate system
models. Several models have been developed using the MPAS
framework. MPAS-Ocean [14] is designed to simulate the
ocean system for a wide range of time scales and spatial scales
from less than 1 km to global circulations.

The MPAS framework utilizes unstructured meshes that can
be created in a variety of ways but are typically Spherical
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(a) Regular SCVT example.

Fig. 2.

Centroidal Voronoi Tessellations (SCVTs). The mesh cells are
a combination of mostly hexagonal cells with a few pentagonal
cells that decompose the data in 2 dimensions, as shown
in Figures 2(a) and 2(b). Figure 2(c) shows the two cell
meshes with overlapping spatial layouts: the Primary Mesh
(Voronoi, hexagons), and the Dual Mesh (Delaunay, triangles).
Within each cell region, edge and vertex lie Scalar Quantities
(Blue Squares), Vector Quantities (Red Triangles) and Vorticity
Quantities (Orange Circles). Each cell has regularly structured
data, such as temperature, salinity, velocity and vorticity. After
the mesh is partitioned, a typical block has 40 vertical levels,
200-500 cells, 400-1000 verticies and 600-1500 edges ex-
plictly assigned to the block. During simulation initialization,
Each block is also assigned a halo region that typically consists
of 3 layers of cells from neighboring blocks. A vast majority
of the communication in MPAS consists of the halo exchanges
between neighboring blocks during each phase of each time-
step.

MPAS-Ocean is developed in Fortran using MPI for large
scale parallelism. The application had previously been instru-
mented with internal timing functions. TAU was integrated
by supplementing the timing infrastructure with TAU timers.
The application instrumentation was mostly at a high level,
encapsulating key phases in the simulation model. Linking
with the TAU library also provides measurement of MPI
communication through the PMPI interface and hardware
counter data using PAPL

D. MPAS-Ocean Load Imbalance

-: Explain partitioning problem - the load balancing
issue, the 3 layer halos. Show view of poorly balanced 60km
example with 256 processes on Edison, both with ParaProf 3D
views. (and with Vislt?)

The performance problem that we are addressing with this
approach is that of load balancing and optimization due to
the elimination of redundant computation. For example, a 256
process run was executed on Edison, an Intel-based Cray ???
system at NERSC. : list Edison’s hardware properties
here The simulation ran for about 5 minutes, executing 1080

(b) Variable resolution SCVT example.

(c) MPAS data layout.

Spherical Centroidal Voronoi Tesselations.
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Fig. 3.
partitioning, element decomposition and the RK4 solver on Edison. The height
and color of the bars represents the time spent in each timed code region, the
highest of which is MPI_Wait ().

256 process performance profile of MPAS-ocean using K-way data

timesteps to simulate 30 days. A TAU profile was collected,
and the result is shown in Figure 3. The center ridge of coun-
ters is the amount of time spent in MPI_Wait (), which dom-
inates the execution time. MPI_Wait ()is used after asyn-
chronous sends and receives between two processes to ensure
the communication has completed. Later experiments showed
that the number of neighbors each process communicates with
is correlated with the number of calls to MPI_Wait (), but
the cumulative time spent in MPI_Wait ()is not correlated
with the number of calls. In addition, as shown in Figure 5,
the time in MPI_Wait ()is negatively correlated with main
computation routines. These observations all indicate that
there is a load balance issue in the code. This result seemed
counterintuitive, as the domain was statically decomposed
using the k-way stragegy in gpetis [15] which reported an
imbalance of less than 1%. ﬂ: validate this percentage
Additional metadata was collected to compute exactly how
much work each process was assigned to compute, includ-
ing the number of cells explicitly assigned to each block
of the partition (nCellsSolve), the total cells including
halo cells (nCells), the total levels computed per block
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Fig. 4. 256 process performance profile of MPAS-ocean using K-way data
partitioning, element decomposition and the RK4 solver on Edison. The height
of the bars represents the time spent in each timed code region, the highest
of which is MPI_Wait (). The colors represent the number of times each
region was executed. MPI_Wait ()is the event with the highest variability.

(totalLevelCells, totallLevelEdgeTop), the num-
ber of edges on each cell in the block (nEdges). The metadata
values were correlated with the performance from each pro-
cess, and the results are shown in Figure 6. While it appears
that the totalLevelEdgeTop, totalLevelCells and
even nEdges are highly correlated, they are all dependent
on the truly correlated value, nCells. In fact, it is also
obvious that the number of cells explicitly assigned to each
block (nCellsSolve) is well balanced and uncorrelated
with performance at all. To understand the difference between
nCells and nCellsSolve requires a deeper understanding
of the halo or ghost cells associated with each block of the
partition.

As described earlier, each block in the partition requires
halo cells from neighboring blocks in order to compute all
phases of computation within a timestep with meaningful
values, a common problem in all stencil decompositions. This
problem is made worse because the computation performed
with monotonic advection requires three layers of halo cells

Correlation of time spent in MPI_Wait () with computation regions.
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Fig. 6. Correlation of MPI_Wait () time with metadata values.

from all neighboring blocks. Each process is required to
compute all of the cells explicitly assigned to the block
(nCellsSolve), as well as the implicitly assigned halo cells,
yeilding the nCells value. As a further complication, blocks
that are less spherically shaped can have significantly more
halo cells than spherical blocks with the same number of cells.

Different operators available within MPAS require different
numbers of halos. For example, the monotonic advection is
the only one that requires 3, but because that method is the
default, all of the simulation options have a default number of
halos of 3. If you have a del2 operation you need 1 halo, and
if you have a del4 operation you need 2 halos. Other operators
might require more or less halos, depending on their stencil.
Almost all of the MPAS loops compute over all cells within a



block, including the 3 layers of halo cells. When performing
the barotropic solves within the split_explicit time stepper a
2D system is solved, and halo updates are performed each
iteration to make the solver is not using “corrupted” data.

The number of cells in the halo regions for each block can
vary significantly from one block to the next. This varation in
the number of halo cells is correlated with the amount of time
spent in computation for each block, and negatively correlated
with the time spent in MPI_Wait (). Unfortunately, the
number of cells in the halo region is a partitioning parameter
that is not known until after the partitioning is complete, and
to our knowledge there are no partitioners that are capable
of generating a balanced partition weighted by an unknown
value. The profiles also suggest that the variability in the depth
of cells (and therefore amount of data to compute per cell) as
well as the number of neighbors for each block also contribute
to the load imbalance, but the most significant property is
the halo region size. We also theorized that a majority of
the underutilized processes were assigned either a coastal
or poorly connected block with a considerably smaller halo
region that does not fully enclose the block. However, at that
time we did not have a method for visualizing the metadata
nor performance properties associated with each block.

IV. APPROACH

-: Discuss how performance data, metadata are col-
lected by TAU at runtime.

As mentioned in Section III-D, the MPAS application is
instrumented with application timers that are mapped to TAU
timers, and MPI timers are collected by TAU using the stan-
dard PMPI interface. In addition, application properties that
potentially have an effect on performance are also collected
as metadata values using manual instrumentation. Some such
properties include those discussed in Section III-D as well as
other partition related variables such as how many neighbors
a process has to communicate with in the mesh.

. Discuss PerfExplorer script to post-process the
TAU profiles and export properties for each partition block.

The TAU profiles are then loaded into the TAUdb
database [?], and post-processed by a PerfExplorer script
to extract and export the performance measurements and
metadata values per process, which maps directly to the block
assigned to the process.

: Discuss MPAS file format, and how NetCDF data
is parsed and interpreted by Vislt.
. Discuss the hindsight partitioner?

V. EXPERIMENTS

-: revisit partitioning problem - the load balancing
issue, the 3 layer halos. Show view of poorly balanced 60km
example with 256 processes on Edison, both with ParaProf
3D views and with Vislt. Explain how Vislt view helps us
understand the true nature of the imbalance.

. Briefly describe the hindsight partitioning ap-
proach. Show view of better balancing, shorter computation,
shorter communication. Show with ParaProf and Vislt.

-: Briefly describe the ghost partitioning approach.
Show view of better balancing, but longer computation, more
communication. Show view of per-block neighbor counts for
each block, and number of calls to MPI_Wait(). Briefly explain
ghost and hindsight approach, show results.

VI. RELATED

ParaProf 3D views [16].

BoxFish [17], [18].

Cube 3D [19].

-: Other examples of performance data mapped to a
domain? There are obvious ones, like all the usual performance
data visualizations, but are they relevant?

-: Other examples of visualization tools like VisIt?

VII. DISCUSSION

Note : Rewrite this to make sense in the context of the
paper!

During the SUPER engagement with the MULTISCALE
project to help optimize the MPAS-Ocean application, the
performance measurement and analysis process revealed inter-
esting properties related to how the irregular mesh application
data was decomposed prior to execution. The domain decom-
position, previously considered to be balanced, was used in
ways that lead to a workload imbalance due to the significant
number of halo (ghost) cells shared between partitions.

SUPER team members from the University of Oregon
and SDAV team members are collaborating to integrate the
visualization of performance data and metadata within the
application domain. Visualizing TAU performance measure-
ments in the context of the application domain has already led
to a better understanding of the partitioning challenges, and
why attempted optimizations were or were not successful. The
information gained will assist in developing new partitioning
strategies where the block properties are unknown until after
partitioning is complete. These visualizations could also be
helpful in placing the application processes on the allocated
hardware to improve communication locality.

VIII. CONCLUSION
-: wrap it up
IX. ACKNOWLEDGEMENTS

This work is supported by DOE SciDAC grant DE-
50006723l should we call out SUPER and SDAV
explicitly, to make the partnering clear? Doug Jacobsen was
supported by the US DOE Office of Science, Biological and
Environmental Research program. : Funding sources?
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Note : Make sure the missing references are resolved!
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