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Abstract Scalasca is a performance analysis tool, which parses the trace of an
application run for certain patterns that indicate performance inefficiencies. In this
paper, we present recently developed new features in Scalasaca. In particular, we
describe two newly implemented analysis methods: the root cause analysis which
tries to identify the cause of a delay and the critical path analysis, which analyses the
path of execution that determines the application runtime. Furthermore, we present
time-series profiling, a method that allows to explore time-dependent behavior of
an application. Finally, we extended the means of Scalasca and its output format
CUBE to define and display topologies.

1 Introduction

Today, high performance computers provide the computing power which is required
by the complexity of many scientific computations. However, providing larger
and more powerful computer systems is useless if the applications do not make
efficient use of the available resources. Especially since the clock rate will no longer
continue to grow, the performance increase is due to increasing the parallelism of
the computer systems.

However, the complexity of parallel programs is much higher than sequential
programs. Furthermore, the hardware is more complex, too. Instead of a single
processor, the programmer must deal with e.g. networks, data transfer rates and
hierarchical memory. Thus, the optimization becomes much more difficult.
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Fig. 1 The performance analysis workflow with Scalasca

Before a programmer can optimize the performance of his program, he must
understand the performance behavior of his program and identify causes of per-
formance reduction. In order to analyze the performance of a program, various
performance analysis tools have been developed, like Scalasca [6], Vampir [8],
TAU [13], Periscope [7] and Paraver [11]. Although each of the tools has its specific
features and methods for analysis and display of results, there are some common
techniques.

Some tools [1, 6, 13] can create a so called profile. It consists of aggregated
statistics of performance metrics like runtime and/or number of visits for every
function or call path and/or for every thread. These statistics give an overview over
the execution.

Another approach is to record all events, e.g. function entry/exit, and its
associated performance data like timestamps in a so called trace. This allows a fine
grained analysis of the application. The user can visualize the trace directly, e.g.,
with Vampir [8] or Paraver [11]. However, manually searching the whole trace is
very tedious. Another possibility, which is used by Scalasca [6], is to automatically
examine an event trace for certain patterns of inefficient behavior. This search
guarantees to cover the whole trace.

Figure 1 shows the performance analysis workflow with Scalasca. To instrument
his application, a user must prefix the original compile and link command with the
scalasca instrumenter. During application run, the events are recorded into a trace
file. The Scalasca parallel trace analyzer analyses the trace and writes an analysis
output which can be interactively explored in the CUBE graphical user interface
(GUI). The CUBE GUI has three panes. The left panes allows to select a metric,
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e.g. time waited, due to a late sender. The middle pane shows a call tree which
provides information where in the code, a particular issue appeared. The right pane
shows the distribution of values over all processes for the selected call path.

Scalasca uses a highly scalable event-trace replay mechanism for its analysis.
Hereby, the trace for every process is stored in a separate file. The trace analyzer is
launched as a separate program after the target application finished and runs on the
same number of processes as the application ran. Every analysis process traverses
the trace of one application process. Whenever the application process commu-
nicated with another process, Scalasca exchanges information, too. Furthermore,
a backward replay is also possible.

In this paper, we will present extensions and new features to Scalasca. First,
we added two new analysis methods to our automatic trace analysis. The first
new method is called root-cause analysis, which identifies the root causes of wait
states in MPI synchronization points. It is described in Sect. 2. Afterwards, Sect. 3
describes the second new analysis method, called critical-path analysis. It is able to
detect inefficiencies that otherwise may be hidden through data aggregation.

Usually, profiling tool designs assume that the iterations of an iterative appli-
cation behave basically the same. However, this is not generally true. Section 4
presents a new feature to analyze time dependent behavior.

Section 5 describes the enhancements of the possibilities to define and display
topologies.

2 Root Cause Analysis

So far, Scalasca’s trace analysis could identify wait states at MPI synchronization
points. Wait states, which are intervals through which a process is idle while
waiting for a delayed process, are a primary symptom of load imbalance in parallel
programs. The new root-cause analysis [2] also identifies the root causes of these
wait states and calculates the costs of delays in terms of the waiting time that they
induce.

A delay is the original source of a wait state, that is, an interval that causes a
process to arrive belatedly at a synchronization point, causing one or more other
processes to wait. Besides simple computational overload, delays may include a
variety of behaviors such as serial operations or centralized coordination activities
that are performed only by a designated process. The costs of a delay are the
total amount of wait states it causes. Wait states can also themselves delay
subsequent communication operations and produce further indirect wait states. This
propagation effect does not only add to the total costs of the original delay, but
also creates a potentially large temporal and spatial distance in between a wait state
and its original root cause. The root-cause analysis closes this gap by mapping the
costs of a delay onto the call paths and processes where the delay occurs, offering a
high degree of guidance in identifying promising targets for load or communication
balancing. Together with the analysis of wait-state propagation effects, the delay
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costs enable a precise understanding of the root causes and the formation of wait
states in parallel programs.

We applied the delay analysis to a variety of real-world MPI programs. One
example is the astrophysics code Zeus-MP/2, where we studied the formation
of wait states in a simulation of a 3D blast wave over 100 time steps on
512 processes. Around 12.5 % of the program’s total CPU allocation time is waiting
time. Scalasca’s report browser can visualize the Cartesian process topology of
a program, which we use in Fig.2 to illustrate the relation between waiting and
delaying processes in terms of their position within the computational domain.
Obviously, there is a computational load imbalance between the central and outer
ranks of the domain. Accordingly, the underloaded processes exhibit a significant
amount of waiting time (Fig.2b). Our analysis shows that about 70 % of the
waiting time was indirectly caused by wait-state propagation. Examining the delay
costs reveals that almost all the delay originates from the border processes of the
central, overloaded region (Fig. 2c). The distribution of the workload explains this
observation: Within the central and outer regions, the workload is relatively well
balanced. Therefore, communication within the same region is not significantly
delayed. In contrast, the difference in computation time between the central and
outer region causes wait states at synchronization points along the border, which
subsequently propagate towards the outer domain border. By pinpointing one
subroutine and three computational loops with particularly high delay costs, the
delay analysis also helped isolating the imbalanced source-code regions that lead to
the wait states.

3 Critical Path Analysis

Our search for compact yet powerful means to uncover inefficiencies in parallel
programs has led us to revisit the critical path as a key performance structure.
Although the power and expressiveness of the critical path has been demonstrated
in previous work, critical-path techniques only play a minor role in current
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performance analysis tools. This arises partly from the difficulty in isolating the
critical path, but also from the inability to extract intuitively accessible insight
from the available information. Our work [3] addresses both issues. We leverage
Scalasca’s parallel trace replay technique to isolate the critical path in a highly
scalable way. Also, instead of exposing the lengthy critical-path structure to the
user in its entirety, we use the critical path to derive a set of compact performance
indicators, which provide intuitive guidance about load-balance characteristics and
quickly draw attention to potentially inefficient code regions.

The critical path is the longest path through a program activity graph that does not
include wait states. Thus, it determines the length of program execution. Prolonging
activities on the critical path increases program runtime, whereas shortening them
(usually) reduces it. In contrast, optimizing an activity not on the critical path only
increases waiting time, but does not affect the overall runtime.

Our critical-path analysis produces a critical-path profile, which represents the
time an activity spends on the critical path. In addition, we combine the critical-
path profile with per-process time profiles to create a critical-path imbalance
performance indicator. This critical-path imbalance corresponds to the time that
is lost due to inefficient parallelization in comparison with a perfectly balanced
program. As such, it provides similar guidance as prior profile-based load imbalance
metrics (e.g., the difference of maximum and average aggregate workload per
process), but the critical-path imbalance indicator can draw a more accurate picture.
The critical path retains dynamic effects in the program execution, such as shifting
of imbalance between processes over time, which per-process profiles simply
cannot capture. Because of this, purely profile-based imbalance metrics regularly
underestimate the actual performance impact of a given load imbalance. As an
extreme example, consider a program like the example in Fig. 3, where a function is
serialized across all processes but runs for the same amount of time on each. Purely
per-process profile based metrics would not show any load imbalance at all, whereas
the critical-path imbalance indicator correctly characterizes the functions serialized
execution as a performance bottleneck.

Both delay analysis and critical-path analysis are implemented as extensions to
the automatic wait-state detection of the Scalasca performance analysis toolset,
leveraging its scalable, post-mortem event-trace analysis. The analyzer traverses
the traces in parallel, iterating over each process-local trace, and exchanges data
required for the performance analysis at each recorded synchronization point using
a communication operation similar to the one originally used by the program.

Other than the pure wait-state analysis, the delay and critical-path analysis
require an additional, backward replay over the trace. A backward replay processes
a trace backwards in time, from its end to its beginning, and reverses the role of
senders and receivers. Overall, the analysis now consists of two stages: (1) a parallel
forward replay that performs the wait state analysis and annotates communication
events with information on synchronization points and waiting time incurred; and
(2) a parallel backward replay that identifies the delays causing each of the wait
states detected during forward replay, calculates their costs, and extracts the critical
path. Starting at the endmost wait states, the backward replay allows delay costs
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Fig. 3 Analysis of dynamic performance effects: The serialized execution of function B, as seen
in the timeline (a), goes unnoticed in a summary profile (b), but is correctly identified as a
performance bottleneck by the critical-path imbalance indicator (c)

to travel from the point where they materialize in the form of wait states back to
the place where they are caused by delays. The backward replay also facilitates
the critical-path analysis, since the route of the critical path through the program
cannot be determined without knowing the end of the execution. For MPI programs,
the critical path runs between MPI_Init and MPI_Finalize. Our critical-path search
begins by determining the MPI rank that entered MPI_Finalize last, which marks the
endpoint of the critical path, and then exploits the lack of wait states on the critical
path: whenever a wait state is found on the currently active path, the search proceeds
on the MPI rank that caused the wait state. This way, we follow the entire critical
path backwards through the trace.

4 Time-Series Profiling

Call path profiling accumulate multiple visits of the same call path. If all visits of
the same call path behave basically the same, all visits are well represented by the
resulting statistics. For iterative applications, the user usually assumes very similar
behavior of each iteration. However, this assumption is not always true. Szebebyi
et al. [15] have shown on examples from the SPEC MPI benchmarks (see Fig. 4)
and on the coulomb solver PEPC [16] (see Fig.5) that some applications change
their behavior for different iterations.
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Fig. 4 Runtime of iterations of the SPEC MPI benchmark codes 121.pop, 126.lammps, 128.GAP-
geofem, 129.tera_tf, 143.dleslie, and 147.12wrf2

To display time-dependent behavior of iterative applications, the Scalasca mea-
surement system can now record separate profiles for every iteration of the main
loop. For this purpose, a user can manually instrument the body of the main loop
using the EPIK API. TAU [13] and Score-P [10] provide similar concepts named
dynamic timer, or dynamic region, respectively.
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However, for applications with many iterations such a time-series profile may
become very large. To reduce the memory requirements of the profile, we added
a mechanism which clusters similar iterations to a single profile sub-tree instance
[14]. The maximum number of clusters is configurable. However, we only cluster
iterations with a similar structure. Iterations which contain different call paths are
never clustered together. The time dynamics can be reconstructed from a mapping
table, which stores the cluster associated with each iteration.

In case of the SPEC MPI benchmarks, the clustered profiles match the profiles
without clustering very well, even if only 64 clusters are used. Figure 6 shows
the comparison between the runtimes of iterations with clustering and without
clustering. In the case of clustering the more complex PEPC coulomb solver, count
based metrics show already a good match when using 64 clusters. However, time
based metrics require more clusters for a good match [14].

S Topologies

Scalasca obtains performance data for every process/tread of the application. In
many cases, the hardware, the network, the communication system (e.g. MPI), or
the application define neighborhood/dependency relationships and/or structure on
these processes/threads, called topologies. However, network structure, hardware
hierarchy, and application neighborhood relationships may significantly influence
the performance of an application. Thus, we extended Scalasca’s capabilities to
record and display topologies. The previous capabilities of Scalasca to represent
topologies were limited to 3-dimensional Cartesian topologies, i.e. each element has
an unique set of coordinates in a 3-dimensional realm. Now, the topologies defined
in Scalasca can have any number of dimensions. Furthermore, an application can
define more than one topology, e.g., to compare the results for hardware topology
and an algorithms domain topology.
Scalasca can work with the following types of Cartesian topologies:
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Fig. 6 comparison between the runtimes of each iteration without clustering and with cluster-
ing for the SPEC MPI benchmarks 129.tera_tf, and 147.12wrf2. (a) 129.tera_tf, no clustering.
(b) 129.tera_tf, 32 clusters. (c) 147.12wrf2, no clustering. (d) 147.12wrf2, 64 clusters

5.1 Hardware Topologies

Supercomputers, such as the IBM Blue Gene series, can report where on the
machine processes run. This is useful in tightly-coupled programs, where distance
information can provide insights on communication delays. This information is
collected automatically by Scalasca during measurement.

Going further with the example of the Blue Gene series, the Blue Gene/Q model
of supercomputer has a five-dimensional torus network, which is fully supported
by Scalasca. Besides the support of topologies with more than 3 dimensions on
measurement and analysis, Scalasca now has a “folding” mechanism which allows
the user to select three-dimensional slices of the topology for visualization. Scalasca
now also supports names for all the topologies and their dimensions, thus, the
topologies can be easily identified. The names of the dimensions also are helpful
to identify the individual processes/threads in complex hardware topologies such as
the Blue Gene/Q’s (see Fig. 7).
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Fig. 7 CUBE showing the Blue Gene/Q’s 5D Hardware Topology. The screenshot shows 524,288
threads on the Jiilich BlueGene/Q machine

5.2 Processes X Threads

Scalasca now automatically creates a two-dimensional virtual topology that shows
all OpenMP threads belonging to each process.

5.3 Runtime Mapping

On MPI programs, for instance, Scalasca can show how the processes are distributed
in ranks and the relationship between them. This information is also collected
automatically by Scalasca during measurement. Scalasca now supports any number
of dimensions. In the future, topologies whose communicator was named using the
MPI_Comm_set_name function will have this name shown in the topology’s tab.

5.4 Algorithm Domain

The MPI specification does not enforce a strict mapping between neighbor ranks
and the hardware, neither between ranks and the problem decomposition, which is
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application specific. In some specific cases, the user might benefit from creating a
virtual topology that is independent from the hardware and from the MPI mapping,
being specific to the application. These topologies can be created manually by the
user, using our APL

6 Future Work

As computational science evolves and new programming paradigms emerge, new
challenges for performance analysis appear. Thus, we will continue to improve
Scalasca. This section describes some of the ongoing developments and planned
features for Scalasca.

First, we will replace Scalasca’s native instrumentation and measurement system
by Score-P [10]. Score-P is a common instrumentation and measurement system,
initially used by Periscope [7], Scalasca [6], TAU [13], and Vampir [8]. This implies
that these tools will also share common data formats for tracing and profiling.
Scalasca will remain as a pure trace analyzer for traces written in the Score-P
OTF2 [4] trace format. Score-P profiles and Scalasca trace analysis reports will be
written in the CUBE4 format, which is the more scalable successor of the current
CUBES3.

The common Score-P measurement stack improves the interoperability of the
tools. Furthermore, it reduces the need for each tool to maintain its own instrumen-
tation and measurement system, and thus, allows tool developers to focus on the
specific analysis strengths of their tools.

With respect to future trace analysis enhancements, we plan to extend the current
OpenMP analysis of Scalasca with the analysis of OpenMP tasks. Score-P can
already record task events [9, 12]. However, we must extend Scalasca’s profile
construction algorithm and we want to add some task specific patterns to its analysis.

At the Barcelona Supercomputing Centre, a new tasking system was developed,
named OmpSs [5]. We want to support measurements of applications using OmpSs.
Therefor, we will implement instrumentation and measurement support for OmpSs
in Score-P. Furthermore, we want to create the task analysis general enough that it
covers also OmpSs tasks. A third new analysis feature that we are working on is the
analysis of one-sided communication and PGAS languages.
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